Browse > Article
http://dx.doi.org/10.12989/aer.2020.9.3.191

The applications of ozone-based advanced oxidation processes for wastewater treatment: A review  

Hussain, Mujtaba (Department of Environmental and Management Studies, Al-Falah University)
Mahtab, Mohd Salim (Department of Civil Engineering, Aligarh Muslim University)
Farooqi, Izharul Haq (Department of Civil Engineering, Aligarh Muslim University)
Publication Information
Advances in environmental research / v.9, no.3, 2020 , pp. 191-214 More about this Journal
Abstract
The rise in population and industrialization accounts for the generation of a huge amount of wastewaters. The treatment of this wastewater is obligatory to safeguard the environment and various life forms. Conventional methods for high strength wastewater treatment coming out to be ineffective. Advanced oxidation processes (AOPs) for such wastewater treatment proved to be very effective particularly for the removal of various refractory compounds present in the wastewater. Ozone based AOPs with its high oxidizing power and excellent disinfectant properties is considered to be an attractive choice for the elimination of a large spectrum of refractory compounds. Furthermore, it enhances the biodegradability of wastewaters after treatment which favors subsequent biological treatments. In this review, a detailed overview of the AOPs (like the Fenton process, photocatalysis, Electrochemical oxidation, wet air oxidation, and Supercritical water oxidation process) has been discussed explicitly focusing on ozone-based AOPs (like O3, O3/H2O2, O3/UV, Ozone/Activated carbon process, Ozone/Ultrasound process, O3/UV/H2O2 process). This review also comprises the involved mechanisms and applications of various ozone-based AOPs for effective municipal/industrial wastewaters and landfill leachate treatment. Process limitations and rough economical analysis were also introduced. The conclusive remarks with future research directions also underlined. It was found that ozonation in combination with other effective AOPs and biological methods enhances treatment efficacies. This review will serve as a reference document for the researchers working in the AOPs field particularly focusing on ozone-based AOPs for wastewater treatment and management systems.
Keywords
advanced oxidation processes; hydroxyl radicals; ozonation; pollutant; recalcitrant compound; wastewater treatment;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Saien, J., Ojaghloo, Z., Soleymani, A.R. and Rasoulifard, M.H. (2011), "Homogeneous and heterogeneous AOPs for rapid degradation of Triton X-100 in aqueous media via UV light, nano titania hydrogen peroxide and potassium persulfate", Chem. Eng. J., 167(1), 172-182. https://doi.org/10.1016/j.cej.2010.12.017.   DOI
2 Kasprzyk-Hordern, B., Ziolek, M. and Nawrocki, J. (2003), "Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment", Appl.Catal. B Environ., 46(4), 639-669. https://doi.org/10.1016/S0926-3373(03)00326-6.   DOI
3 Gardoni, D., Vailati, A. and Canziani, R. (2012), "Decay of ozone in water: A review", Ozone Sci. Eng., 34(4), 233-242. https://doi.org/10.1080/01919512.2012.686354.   DOI
4 Garoma, T. and Gurol, M.D. (2004), "Degradation of tert-butyl alcohol in dilute aqueous solution by an $O_3/UV$ process", Environ. Sci. Technol., 38(19), 5246-5252. https://doi.org/10.1021/es0353210.   DOI
5 Gautam, P., Kumar, S. and Lokhandwala, S. (2019), "Advanced oxidation processes for treatment of leachate from hazardous waste landfill: A critical review", J. Clean. Prod., 237, 117639. https://doi.org/10.1016/j.jclepro.2019.117639.   DOI
6 Gerba, C.P., Betancourt, W.Q., Kitajima, M. and Rock, C.M. (2018), "Reducing uncertainty in estimating virus reduction by advanced water treatment processes", Water Res., 133, 282-288. https://doi.org/10.1016/j.watres.2018.01.044.   DOI
7 Gogate, P.R. and Pandit, A.B. (2004), "A review of imperative technologies for wastewater treatment II: Hybrid methods", Adv. Environ. Res., 8(3-4), 553-597. https://doi.org/10.1016/S1093-0191(03)00031-5.   DOI
8 Gottschalk, C., Libra, J.A. and Saupe, A. (2009), Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and its Applications, John Wiley & Sons.
9 Sanchez-Polo, M., Rivera-Utrilla, J., Prados-Joya, G., Ferro-Garcia, M.A. and Bautista-Toledo, I. (2008), "Removal of pharmaceutical compounds, nitroimidazoles, from waters by using the ozone/carbonsystem", Water Res., 42(15), 4163-4171. https://doi.org/10.1016/j.watres.2008.05.034.   DOI
10 Selcuk, H. (2005), "Decolorization and detoxification of textile wastewater by ozonation and coagulation processes", Dyes Pigments, 64(3), 217-222. https://doi.org/10.1016/j.dyepig.2004.03.020.   DOI
11 Sharma, A., Verma, M. and Haritash, A.K. (2016), "Degradation of toxic azo dye (AO7) using Fenton's process", Adv. Environ. Res., 5(3), 189-200. http://doi.org/10.12989/aer.2016.5.3.189.   DOI
12 Staehelin, J. and Hoigne, J. (1982), "Decomposition of ozone in water: Rate of initiation by hydroxide ions and hydrogen peroxide", Environ. Sci. Technol., 16(10), 676-681. https://doi.org/10.1021/es00104a009.   DOI
13 Swami, D. and Buddhi, D. (2006), "Removal of contaminants from industrial wastewater through various non-conventional technologies: A review", Int. J. Environ. Pollut., 27(4), 324-346. https://doi.org/10.1504/IJEP.2006.010576.   DOI
14 Thompson, G., Swain, J., Kay, M. and Forster, C.F. (2001), "The treatment of pulp and paper mill effluent: A review", Bioresource Technol., 77(3), 275-286. https://doi.org/10.1016/S0960-8524(00)00060-2.   DOI
15 Hamza, R.A., Iorhemen, O.T. and Tay, J.H. (2016), "Anaerobic-aerobic granular system for high-strength wastewater treatment in lagoons", Adv. Environ. Res., 5(3), 169-178. http://doi.org/10.12989/aer.2016.5.3.169.   DOI
16 Tijani, J.O., Fatoba, O.O., Madzivire, G. and Petrik, L.F. (2014), "A review of combined advanced oxidation technologies for the removal of organic pollutants from water", Water Air Soil Pollut., 225(9), 2102. https://doi.org/10.1007/s11270-014-2102-y.   DOI
17 Tizaoui, C., Bouselmi, L., Mansouri, L. and Ghrabi, A. (2007), "Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems", J. Hazard. Mater., 140(1-2), 316-324. https://doi.org/10.1016/j.jhazmat.2006.09.023.   DOI
18 Tofani, G. and Richard, Y. (1995), "Use of ozone for the treatment of a combined urban and industrial effluent: A case history", Ozone Sci. Eng., 17(3), 345-354. https://doi.org/10.1080/01919519508547540.   DOI
19 Guo, W.Q., Ding, J., Cao, G.L., Ren, N.Q. and Cui, F.Y. (2011), "Treatability study of using low-frequency ultrasonic pretreatment to augment continuous biohydrogen production", Int. J. Hydrogen Energy, 36(21), 14180-14185. https://doi.org/10.1016/j.ijhydene.2011.04.057.   DOI
20 Guo, W.Q., Yin, R.L., Zhou, X.J., Cao, H.O., Chang, J.S. and Ren, N.Q. (2016), "Ultrasonic-assisted ozone oxidation process for sulfamethoxazole removal: Impact factors and degradation process", Des. Water Treat., 57(44), 21015-21022. https://doi.org/10.1080/19443994.2015.1115373.
21 Hassanshahi, N. and Karimi-Jashni, A. (2018), "Comparison of photo-Fenton, O3/H2O2/UV and photocatalytic processes for the treatment of gray water", Ecotox. Environ. Safe., 161, 683-690. https://doi.org/10.1016/j.ecoenv.2018.06.039.   DOI
22 He, S.B., Wang, B.Z., Wang, L. and Jiang, Y.F. (2003), "Treating both wastewater and excess sludge with an innovative process", J. Environ. Sci., 15(6), 749-756.   DOI
23 He, Z., Zhu, R., Xu, X., Song, S., Chen, J. and Xia, M. (2009), "Ozonation combined with sonolysis for degradation and detoxification of m-nitrotoluene in aqueous solution", Industr. Eng. Chem. Res., 48(12), 5578-5583. https://doi.org/10.1021/ie801566z.   DOI
24 Valdes, H. and Zaror, C.A. (2006), "Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: Kinetic approach", Chemosphere, 65(7), 1131-1136. https://doi.org/10.1016/j.chemosphere.2006.04.027.   DOI
25 Turhan, K. and Ozturkcan, S.A. (2013), "Decolorization and degradation of reactive dye in aqueous solution by ozonation in a semi-batch bubble column reactor", Water Air Soil Pollut., 224(1), 1353. https://doi.org/10.1007/s11270-012-1353-8.   DOI
26 Tyrrell, S.A., Rippey, S.R. and Watkins, W.D. (1995), "Inactivation of bacterial and viral indicators in secondary sewage effluents, using chlorine and ozone", Water Res., 29(11), 2483-2490. https://doi.org/10.1016/0043-1354(95)00103-R.   DOI
27 US Environmental Protection Agency. (1999), Wastewater Technology Fact Sheet: Ozone Disinfection, https://www3.epa.gov/npdes/pubs/ozon.pdf.
28 Venosa, A.D., Petrasek, A.C., Brown, D., Sparks, H.L. and Allen, D.M. (1984), "Disinfection of secondary effluent with ozone/UV", J. Water Pollut. Control Fed., 137-142.
29 Chu, L.B., Xing, X.H., Yu, A.F., Sun, X.L. and Jurcik, B. (2008), "Enhanced treatment of practical textile wastewater by microbubble ozonation", Process Saf. Environ., 86(5), 389-393. https://doi.org/10.1016/j.psep.2008.02.005.   DOI
30 Hernandez, R., Zappi, M., Colucci, J. and Jones, R. (2002), "Comparing the performance of various advanced oxidation processes for treatment of acetone contaminated water", J. Hazard. Mater., 92(1), 33-50. https://doi.org/10.1016/S0304-3894(01)00371-5.   DOI
31 Tungler, A., Szabados, E. and Hosseini, A.M. (2015), "Wet air oxidation of aqueous wastes", Wastewater Treat. Eng., 153. http://doi.org/10.5772/60935.
32 Verma, M. and Haritash, A.K. (2020), "Review of advanced oxidation processes (AOPs) for treatment of pharmaceutical wastewater", Adv. Environ. Res., 9(1), 1-17. https://doi.org/10.12989/aer.2020.9.1.001.   DOI
33 Vlyssides, A.G., Karlis, P.K. and Mahnken, G. (2003), "Influence of various parameters on the electrochemical treatment of landfill leachates", J. Appl. Electrochem., 33(2), 155-159. https://doi.org/10.1023/A:1024049324967.   DOI
34 Von Gunten, U. (2003), "Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine", Water Res., 37(7), 1469-1487. https://doi.org/10.1016/S0043-1354(02)00458- X.   DOI
35 De Wilt, A., van Gijn, K., Verhoek, T., Vergnes, A., Hoek, M., Rijnaarts, H. and Langenhoff, A. (2018), "Enhanced pharmaceutical removal from water in a three step bio-ozone-bio process", Water Res., 138, 97-105. https://doi.org/10.1016/j.watres.2018.03.028.   DOI
36 Chu, W.H., Gao, N.Y., Yin, D.Q., Deng, Y. and Templeton, M.R. (2012), "Ozone-biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection byproducts", Chemosphere, 86(11), 1087-1091. https://doi.org/10.1016/j.chemosphere.2011.11.070.   DOI
37 Cuerda-Correa, E.M., Alexandre-Franco, M.F. and Fernandez-Gonzalez, C. (2020), "Advanced oxidation processes for the removal of antibiotics from water. An overview", Water, 12(1), 102. https://doi.org/10.3390/w12010102.   DOI
38 De Oliveira, T.F., Cagnon, B., Chedeville, O. and Fauduet, H. (2014), "Removal of a mix of endocrine disrupters from different natural matrices by ozone/activated carbon coupling process", Des. Water Treat., 52(22-24), 4395-4403. https://doi.org/10.1080/19443994.2013.803668.   DOI
39 Deng, H. (2020), "A review on the application of ozonation to NF/RO concentrate for municipal wastewater reclamation", J. Hazard. Mater., 391, 122071. https://doi.org/10.1016/j.jhazmat.2020.122071.   DOI
40 Deng, Y. and Zhao, R. (2015), "Advanced oxidation processes (AOPs) in wastewater treatment", Curr. Pollution Reports, 1(3), 167-176. https://doi.org/10.1007/s40726-015-0015-z.   DOI
41 Wu, K., Zhang, F., Wu, H. and Wei, C. (2018), "The mineralization of oxalic acid and bio-treated coking wastewater by catalytic ozonation using nickel oxide", Environ. Sci. Pollut. Res., 25(3), 2389-2400. https://doi.org/10.1007/s11356-017-0597-7.   DOI
42 Weavers, L.K. and Hoffmann, M.R. (1998), "Sonolytic decomposition of ozone in aqueous solution: Mass transfer effects", Environ. Sci. Technol., 32(24), 3941-3947. https://doi.org/10.1021/es980620o.   DOI
43 Wei, C., Zhang, F., Hu, Y., Feng, C. and Wu, H. (2017), "Ozonation in water treatment: the generation, basic properties of ozone and its practical application", Rev. Chem. Eng., 33(1), 49-89. https://doi.org/10.1515/revce-2016-0008.   DOI
44 Westerhoff, P., Yoon, Y., Snyder, S. and Wert, E. (2005), "Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes", Environ. Sci. Technol., 39(17), 6649-6663. https://doi.org/10.1021/es0484799.   DOI
45 Zhang, F., Wei, C., Hu, Y. and Wu, H. (2015), "Zinc ferrite catalysts for ozonation of aqueous organic contaminants: Phenol and bio-treated coking wastewater", Sep. Purif. Technol., 156, 625-635. https://doi.org/10.1016/j.seppur.2015.10.058.   DOI
46 Destaillats, H., Colussi, A.J., Joseph, J.M. and Hoffmann, M.R. (2000), "Synergistic effects of sonolysis combined with ozonolysis for the oxidation of azobenzene and methyl orange", J. Phys. Chem. A, 104(39), 8930-8935. https://doi.org/10.1021/jp001415.   DOI
47 Dietrich, M.J., Randall, T.L. and Canney, P.J. (1985), "Wet air oxidation of hazardous organics in wastewater", Environ. Progress, 4(3), 171-177. https://doi.org/10.1002/ep.670040312.   DOI
48 El-Din, M.G. and Smith, D.W. (2002), "Ozonation of kraft pulp mill effluents: Process dynamics", J. Environ. Eng. Sci., 1(1), 45-57. https://doi.org/10.1139/s01-001.   DOI
49 Yang, B., Cheng, Z., Yuan, T., Gao, X., Tan, Y., Ma, Y. and Shen, Z. (2018), "Temperature sensitivity of nitrogen-containing compounds decomposition during supercritical water oxidation (SCWO)", J. Taiwan Inst. Chem. Eng., 93, 31-41. https://doi.org/10.1016/j.jtice.2018.07.029.   DOI
50 Ye, G., Luo, P., Zhao, Y., Qiu, G., Hu, Y., Preis, S. and Wei, C. (2020), "Three-dimensional Co/Ni bimetallic organic frameworks for high-efficient catalytic ozonation of atrazine: Mechanism, effect parameters, and degradation pathways analysis", Chemosphere, 126767. https://doi.org/10.1016/j.chemosphere.2020.126767.
51 Zhang, F., Wei, C., Wu, K., Zhou, H., Hu, Y. and Preis, S. (2017), "Mechanistic evaluation of ferrite AFe2O4 (A= Co, Ni, Cu, and Zn) catalytic performance in oxalic acid ozonation", Appl. Catal. A General, 547, 60-68. https://doi.org/10.1016/j.apcata.2017.08.025.   DOI
52 Zhang, H., Duan, L. and Zhang, D. (2006), "Decolorization of methyl orange by ozonation in combination with ultrasonic irradiation", J. Hazard. Mater., 138(1), 53-59. https://doi.org/10.1016/j.jhazmat.2006.05.034.   DOI
53 Zhang, J., Wang, S., Li, Y., Lu, J., Chen, S. and Luo, X. (2017), "Supercritical water oxidation treatment of textile sludge", Environ. Technol., 38(15), 1949-1960. https://doi.org/10.1080/09593330.2016.1242655.   DOI
54 Zhou, H. and Smith, D.W. (2002), "Advanced technologies in water and wastewater treatment", J. Environ. Eng. Sci., 1(4), 247-264. https://doi.org/10.1139/s02-020.   DOI
55 Beltran, F.J., Garcia-Araya, J.F. and Alvarez, P.M. (1999), "Integration of continuous biological and chemical (ozone) treatment of domestic wastewater: 2. Ozonation followed by biological oxidation", J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol., 74(9), 884-890. https://doi.org/10.1002/(SICI)1097-4660(199909)74:9%3C884::AID-JCTB120%3E3.0.CO;2-M.
56 Ferguson, D.W., McGuire, M.J., Koch, B., Wolfe, R.L. and Aieta, E.M. (1990), "Comparing peroxone and ozone for controlling taste and odor compounds, disinfection by-products, and microorganisms", J. Amer. Water Works Assoc., 82(4), 181-191. https://doi.org/10.1002/j.1551- 8833.1990.tb06950.x.   DOI
57 Fontanier, V., Albet, J., Baig, S. and Molinier, J. (2005), "Simulation of pulp mill wastewater recycling after tertiary treatment", Environ. Technol., 26(12), 1335-1344. https://doi.org/10.1080/09593332608618610.   DOI
58 Fontanier, V., Farines, V., Albet, J., Baig, S. and Molinier, J. (2006), "Study of catalyzed ozonation for advanced treatment of pulp and paper mill effluents", Water Res., 40(2), 303-310. https://doi.org/10.1016/j.watres.2005.11.007.   DOI
59 Beltran, F.J., Garcia-Araya, J.F. and A lvarez, P.M. (2000), "Sodium dodecylbenzenesulfonate removal from water and wastewater. 1. Kinetics of decomposition by ozonation", Industr. Eng. Chem. Res., 39(7), 2214-2220. https://doi.org/10.1021/ie990721a.   DOI
60 Beltran, F.J., Garcia-Araya, J.F. and Giraldez, I. (2006), "Gallic acid water ozonation using activated carbon", Appl. Catal. B Environ., 63(3-4), 249-259. https://doi.org/10.1016/j.apcatb.2005.10.010.   DOI
61 Bila, D.M., Montalvao, A.F., Silva, A.C. and Dezotti, M. (2005), "Ozonation of a landfill leachate: Evaluation of toxicity removal and biodegradability improvement", J. Hazard. Mater., 117(2-3), 235-242. https://doi.org/10.1016/j.jhazmat.2004.09.022.   DOI
62 Brillas, E., Mur, E. and Casado, J. (1996), "Iron (II) catalysis of the mineralization of aniline using a carbon-PTFE O 2-Fed cathode", J. Electrochem. Soc., 143(3), L49. https://doi.org/10.1149/1.1836528.   DOI
63 Ageena, N.A. (2010), "The use of local sawdust as an adsorbent for the removal of copper ion from wastewater using fixed-bed adsorption", Eng. Technol. J., 28(2), 224-235.
64 Khadre, M.A., Yousef, A.E. and Kim, J.G. (2001), "Microbiological aspects of ozone applications in food: A review", J. Food Sci., 66(9), 1242-1252. https://doi.org/10.1111/j.1365-2621.2001.tb15196.x.   DOI
65 Zhang, F., Wu, K., Zhou, H., Hu, Y., Wu, H. and Wei, C. (2018), "Ozonation of aqueous phenol catalyzed by biochar produced from sludge obtained in the treatment of coking wastewater", J. Environ. Manage., 224, 376-386. https://doi.org/10.1016/j.jenvman.2018.07.038.   DOI
66 Larcher, S., Delbes, G., Robaire, B. and Yargeau, V. (2012), "Degradation of $17{\alpha}$-ethinylestradiol by ozonation- Identification of the by-products and assessment of their estrogenicity and toxicity", Environ. Int., 39(1), 66-72. https://doi.org/10.1016/j.envint.2011.09.008.   DOI
67 Kumari, M. and Saroha, A.K. (2018), "Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: A review", J. Environ. Manage., 228, 169-188. https://doi.org/10.1016/j.jenvman.2018.09.003.   DOI
68 Kurt, A., Mert, B.K., O zengin, N., Sivrioglu, O. and Yonar, T. (2017), Treatment of Antibiotics in Wastewater Using Advanced Oxidation Processes (AOPs), Physico-Chemical Wastewater Treatment and Resource Recovery, InTech, Rijeka, Croatia.
69 Langlais, B., Reckhow, D.A. and Brink, D.R. (1991), Ozone in Water Treatment: Application and Engineering, CRC Press.
70 LeChevallier, M.W., Becker, W.C., Schorr, P. and Lee, R.G. (1992), "Evaluating the performance of biologically active rapid filters", J. Amer. Water Works Assoc., 84(4), 136-146. https://doi.org/10.1002/j.1551-8833.1992.tb07339.x.   DOI
71 Lenntech (2016), Water treatment solution, Ozone decomposition, Technical University of Delft, The Netherlands. http://www.lenntech.com/library/ozone/decomposition/ozone-decomposition.htm.
72 Alaton, I.A., Dogruel, S., Baykal, E. and Gerone, G. (2004), "Combined chemical and biological oxidation of penicillinformulation effluent", J. Environ. Manage., 73(2), 155-163. https://doi.org/10.1016/j.jenvman.2004.06.007.   DOI
73 Cacace, F. and Speranza, M. (1994), "Protonated ozone: Experimental detection of $O_{3}H^{+}$ and evaluation of the proton affinity of ozone", Science, 265(5169), 208-209. https://doi.org/10.1126/science.265.5169.208.   DOI
74 Chedeville, O., Debacq, M. and Porte, C. (2009), "Removal of phenolic compounds present in olive mill wastewaters by ozonation", Desalination, 249(2), 865-869. https://doi.org/10.1016/j.desal.2009.04.014.   DOI
75 Cernigoj, U., Stangar, U.L. and Trebse, P. (2007), "Degradation of neonicotinoid insecticides by different advanced oxidation processes and studying the effect of ozone on $TiO_2$ photocatalysis", Appl. Catal. B Environ., 75(3-4), 229-238. https://doi.org/10.1016/j.apcatb.2007.04.014.   DOI
76 Chang, E.E., Hsing, H.J., Chiang, P.C., Chen, M.Y. and Shyng, J.Y. (2008), "The chemical and biological characteristics of coke-oven wastewater by ozonation", J. Hazard. Mater., 156(1-3), 560-567. https://doi.org/10.1016/j.jhazmat.2007.12.106.   DOI
77 Chang, J.S., Lawless, P.A. and Yamamoto, T. (1991), "Corona discharge processes", IEEE T. Plasma Sci., 19(6), 1152-1166. https://doi.org/10.1109/27.125038.   DOI
78 Christensen, T.H., Kjeldsen, P., Bjerg, P.L., Jensen, D.L., Christensen, J.B., Baun, A. and Heron, G. (2001), "Biogeochemistry of landfill leachate plumes", Appl. Geochem., 16(7-8), 659-718. https://doi.org/10.1016/S0883-2927(00)00082-2.   DOI
79 Alonso, J.M., Garcia, J., Calleja, A.J., Ribas, J. and Cardesin, J. (2005), "Analysis, design, and experimentation of a high-voltage power supply for ozone generation based on current-fed parallelresonant push-pull inverter", IEEE T. Indust. Appl., 41(5), 1364-1372. https://doi.org/10.1109/TIA.2005.853379.   DOI
80 Alvares, A.B.C., Diaper, C. and Parsons, S.A. (2001), "Partial oxidation by ozone to remove recalcitrance from wastewaters-a review", Environ. Technol., 22(4), 409-427. https://doi.org/10.1080/09593332208618273.   DOI
81 Levanov, A.V., Antipenko, E.E. and Lunin, V.V. (2012), "Primary stage of the reaction between ozone and chloride ions in aqueous solution: Oxidation of chloride ions with ozone through the mechanism of oxygen atom transfer", Russian J. Phys. Chem. A, 86(3), 519-522. https://doi.org/10.1134/S0036024412030193.   DOI
82 Li, Y. and Wang, S. (2019), Supercritical Water Oxidation for Environmentally Friendly Treatment of Organic Wastes, in Advanced Supercritical Fluids Technologies. IntechOpen.
83 Levanov, A.V., Isaykina, O.Y., Amirova, N.K., Antipenko, E.E. and Lunin, V.V. (2015), "Photochemical oxidation of chloride ion by ozone in acid aqueous solution", Environ. Sci. Pollut. Res., 22(21), 16554-16569. https://doi.org/10.1007/s11356-015-4832-9.   DOI
84 Li, J., Wang, S., Li, Y., Jiang, Z., Xu, T. and Zhang, Y. (2020), "Supercritical water oxidation and process enhancement of nitrogen-containing organics and ammonia", Water Res., 116222. https://doi.org/10.1016/j.watres.2020.116222.   DOI
85 Li, J., Yang, F., Li, Y., Wong, F.S. and Chua, H.C. (2008), "Impact of biological constituents and properties of activated sludge on membrane fouling in a novel submerged membrane bioreactor", Desalination, 225(1-3), 356-365. https://doi.org/10.1016/j.desal.2007.07.015.   DOI
86 Liu, N., Cui, H.Y. and Yao, D. (2009), "Decomposition and oxidation of sodium 3, 5, 6-trichloropyridin-2- ol in sub-and supercritical water", Process Safe. Environ., 87(6), 387-394. https://doi.org/10.1016/j.psep.2009.07.004.   DOI
87 Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J. and Wang, X.C. (2014), "A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment", Sci. Total Environ., 473, 619-641. https://doi.org/10.1016/j.scitotenv.2013.12.065.   DOI
88 M'Arimi, M.M., Mecha, C.A., Kiprop, A.K. and Ramkat, R. (2020), "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production", Renew. Sust. Energy Rev., 121, 109669. https://doi.org/10.1016/j.rser.2019.109669.   DOI
89 Amor, C., Marchao, L., Lucas, M.S. and Peres, J.A. (2019), "Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review", Water, 11(2), 205. https://doi.org/10.3390/w11020205.   DOI
90 Hoigne, J. and Bader, H. (1983), "Rate constants of reactions of ozone with organic and inorganic compounds in water-I: Non-dissociating organic compounds", Water Res., 17(2), 173-183. https://doi.org/10.1016/0043-1354(83)90098-2.   DOI
91 Ataei, A., Mirsaeed, M.G., Choi, J.K. and Lashkarboluki, R. (2015), "Application of ozone treatment in cooling water systems for energy and chemical conservation", Adv. Environ. Res., 4(3), 155-172. https://doi.org/10.12989/aer.2015.4.3.155.   DOI
92 Amr, S.S.A., Aziz, H.A. and Bashir, M.J. (2014), "Application of response surface methodology (RSM) for optimization of semi-aerobic landfill leachate treatment using ozone", Appl. Water Sci., 4(3), 231- 239. https://doi.org/10.1007/s13201-014-0156-z.   DOI
93 Amr, S.S.A., Aziz, H.A., Adlan, M.N. and Aziz, S.Q. (2013), "Effect of ozone and ozone/Fenton in the advanced oxidation process on biodegradable characteristics of semi-aerobic stabilized leachate", CLEAN-Soil, Air, Water, 41(2), 148-152. https://doi.org/10.1002/clen.201200005.   DOI
94 Andreozzi, R., Caprio, V., Insola, A. and Marotta, R. (1999), "Advanced oxidation processes (AOP) for water purification and recovery", Catalysis Today, 53(1), 51-59. https://doi.org/10.1016/S0920-5861(99)00102-9.   DOI
95 Bauer, R., Waldner, G., Fallmann, H., Hager, S., Klare, M., Krutzler, T., Malato, S. and Maletzky, P. (1999), "The photo-fenton reaction and the $TiO_2/UV$ process for waste water treatment-novel developments", Catalysis Today, 53(1), 131-144. https://doi.org/10.1016/S0920-5861(99)00108-X.   DOI
96 Behnajady, M. A., Modirshahla, N., Shokri, M. and Vahid, B. (2008), "Effect of operational parameters on degradation of Malachite Green by ultrasonic irradiation", Ultrason. Sonochem., 15(6), 1009-1014. https://doi.org/10.1016/j.ultsonch.2008.03.004.   DOI
97 Al-Kdasi, A., Idris, A., Saed, K. and Guan, C.T. (2004), "Treatment of textile wastewater by advanced oxidation processes-a review", Global nest Int. J., 6(3), 222-230.
98 Mahtab, M.S. and Farooqi, I.H. (2020), "UV-$TiO_2$ process for landfill leachate treatment: Optimization by response surface methodology", Int. J. Res. Eng. Appl. Manage., 5(12), 14-18. https://doi.org/10.35291/2454-9150.2020.0160.
99 Hoigne, J.H.W.R.J., Bader, H., Haag, W.R. and Staehelin, J. (1985), "Rate constants of reactions of ozone with organic and inorganic compounds in water-III. Inorganic compounds and radicals", Water Res., 19(8), 993-1004. https://doi.org/10.1016/0043-1354(85)90368-9.   DOI
100 Medeiros, D.R., Pires, E.C. and Mohseni, M. (2008), "Ozone oxidation of pulp and paper wastewater and its impact on molecular weight distribution of organic matter", Ozone Sci. Eng., 30(1), 105-110. https://doi.org/10.1080/01919510701817914.   DOI
101 Michalska, K., Miazek, K., Krzystek, L. and Ledakowicz, S. (2012), "Influence of pretreatment with Fenton's reagent on biogas production and methane yield from lignocellulosic biomass", Bioresource Technol., 119, 72-78. https://doi.org/10.1016/j.biortech.2012.05.105.   DOI
102 Miklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E. and Hubner, U. (2018), "Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review", Water Res., 139, 118-131. https://doi.org/10.1016/j.watres.2018.03.042.   DOI
103 Mills, A. and Le Hunte, S. (1997), "An overview of semiconductor photocatalysis", J. Photochem. Photobiol. A Chem., 108(1), 1-35. https://doi.org/10.1016/S1010-6030(97)00118-4.   DOI
104 Munter, R. (2001), "Advanced oxidation processes-current status and prospects", Proc. Estonian Acad. Sci. Chem., 50(2), 59-80.
105 Nebel, C., Gottschling, R.D., Hutchison, R.L., McBride, T.J., Taylor, D.M., Pavoni, J.L and Fleischman, M. (1973), "Ozone disinfection of industrial-municipal secondary effluents", J. Water Pollut. Control Fed., 45(12), 2493-2507.
106 Nemes, A., Fabian, I. and Van Eldik, R. (2000), "Kinetics and mechanism of the carbonate ion inhibited aqueous ozone decomposition", J. Phys. Chem. A, 104(34), 7995-8000. https://doi.org/10.1021/jp000972t.   DOI
107 Oh, B.S., Park, S.J., Lee, H.G., Kim, K.S., Lee, K.H. and Kang, J.W. (2003), "Application of ozone/UV process for the reclamation of sewage treatment plant effluent", J. Water Environ. Technol., 1(2), 141- 153. https://doi.org/10.2965/jwet.2003.141.   DOI
108 Huang, W.J., Fang, G.C. and Wang, C.C. (2005), "The determination and fate of disinfection by-products from ozonation of polluted raw water", Sci. Total Environ., 345(1-3), 261-272. https://doi.org/10.1016/j.scitotenv.2004.10.019.   DOI
109 Hu, Y., Feng, C. and Wu, H. (2017), "Ozonation in water treatment: The generation, basic properties of ozone and its practical application", Rev. Chem. Eng., 33(1), 49-89. https://doi.org/10.1515/revce-2016-0008.   DOI
110 Huang, C. P., Dong, C. and Tang, Z. (1993), "Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment", Waste Manage., 13(5-7), 361-377. https://doi.org/10.1016/0956-053X(93)90070-D.   DOI
111 Hunt, N.K. and Marinas, B.J. (1997), "Kinetics of Escherichia coli inactivation with ozone", Water Res., 31(6), 1355-1362. https://doi.org/10.1016/S0043-1354(96)00394-6.   DOI
112 Ikehata, K. and El-Din, M.G. (2004), "Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: A review", Ozone Sci. Eng., 26(4), 327-343. https://doi.org/10.1080/01919510490482160.   DOI
113 Ikehata, K. and Li, Y. (2018), Ozone-Based Processes, in Advanced Oxidation Processes for Waste Water Treatment, Academic Press, 115-134.
114 Ikehata, K., Jodeiri Naghashkar, N. and Gamal El-Din, M. (2006), "Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review", Ozone Sci. Eng., 28(6), 353-414. https://doi.org/10.1080/01919510600985937.   DOI
115 Hernando, M.D., Petrovic, M., Radjenovic, J., Fernandez-Alba, A.R. and Barcelo, D. (2007), "Removal of pharmaceuticals by advanced treatment technologies", Comprehens. Anal. Chem., 50, 451-474. https://doi.org/10.1016/S0166-526X(07)50014-0.   DOI
116 Pandey, A.K., Vishwakarma, P., Thakur, S. and Krishna, V. (2019), "A review of degradation of organic waste in contaminated water by ozone and nanomaterials", J. Emerg. Technol. Innov. Res., 6(1), 748-766.
117 Oller, I., Malato, S. and Sanchez-Perez, J.A. (2011), "Combination of advanced oxidation processes and biological treatments for wastewater decontamination-A review", Sci. Total Environ., 409(20), 4141- 4166. https://doi.org/10.1016/j.scitotenv.2010.08.061.   DOI
118 Oturan, M.A. and Aaron, J.J. (2014), "Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review", Crit. Rev. Env. Sci. Tec., 44(23), 2577-2641. https://doi.org/10.1080/10643389.2013.829765.   DOI
119 Pachhade, K., Sandhya, S. and Swaminathan, K. (2009), "Ozonation of reactive dye, Procion red MX-5B catalyzed by metal ions", J. Hazard. Mater., 167(1-3), 313-318. https://doi.org/10.1016/j.jhazmat.2008.12.126.   DOI
120 Paraskeva, P. and Graham, N.J. (2002), "Ozonation of municipal wastewater effluents", Water Environ. Res., 74(6), 569-581. https://doi.org/10.2175/106143002X140387.   DOI
121 Parga, J.R., Shukla, S.S. and Carrillo-Pedroza, F.R. (2003), "Destruction of cyanide waste solutions using chlorine dioxide, ozone and titania sol", Waste Manage., 23(2), 183-191. https://doi.org/10.1016/S0956- 053X(02)00064-8.   DOI
122 Paucar, N.E., Kim, I., Tanaka, H. and Sato, C. (2019), "Ozone treatment process for the removal of pharmaceuticals and personal care products in wastewater", Ozone Sci. Eng., 41(1), 3-16. https://doi.org/10.1080/01919512.2018.1482456.   DOI
123 Peyton, G.R. and Glaze, W.H. (1988), "Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 3. Photolysis of aqueous ozone", Environ. Sci. Technol., 22(7), 761-767. https://doi.org/10.1021/es00172a003.   DOI
124 Rajeswari, R. and Kanmani, S. (2009), "A study on synergistic effect of photocatalytic ozonation for carbaryl degradation", Desalination, 242(1-3), 277-285. https://doi.org/10.1016/j.desal.2008.05.007.   DOI
125 Pouran, S.R., Raman, A.A.A. and Daud, W.M.A.W. (2014), "Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions", J. Clean. Prod., 64, 24-35. https://doi.org/10.1016/j.jclepro.2013.09.013.   DOI
126 Praveen, V. and Sunil, B.M. (2016), "Potential use of waste rubber shreds in drainage layer of landfills-An experimental study", Adv. Environ. Res., 5(3), 201-211. http://doi.org/10.12989/aer.2016.5.3.201.   DOI
127 Rajeshwar, K.I.J.G., Ibanez, J.G. and Swain, G.M. (1994), "Electrochemistry and the environment", J. Appl. Electrochem., 24(11), 1077-1091. https://doi.org/10.1007/BF00241305.   DOI
128 Ratola, N., Cincinelli, A., Alves, A. and Katsoyiannis, A. (2012), "Occurrence of organic microcontaminants in the wastewater treatment process. A mini review", J. Hazard. Mater., 239, 1-18. https://doi.org/10.1016/j.jhazmat.2012.05.040.   DOI
129 Rice, R.G. (1996), "Applications of ozone for industrial wastewater treatment-a review", Ozone Sci. Eng., 18(6), 477-515. https://doi.org/10.1080/01919512.1997.10382859.   DOI
130 Riebel, A.H., Erickson, R.E., Abshire, C.J. and Bailey, P.S. (1960), "Ozonation of carbon-nitrogen double bonds. I. Nucleophilic attack of ozone1", J. Amer. Chem. Soc., 82(7), 1801-1807. https://doi.org/10.1021/ja01492a062.   DOI
131 Ried, A., Mielcke, J. and Wieland, A. (2009), "The potential use of ozone in municipal wastewater", Ozone Sci. Eng., 31(6), 415-421. https://doi.org/10.1080/01919510903199111.   DOI
132 Rosenfeldt, E.J., Linden, K.G., Canonica, S. and Von Gunten, U. (2006), "Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes $O_3/H_2O_2$ and $UV/H_2O_2$", Water Res., 40(20), 3695-3704. https://doi.org/10.1016/j.watres.2006.09.008.   DOI
133 Jiang, X.Y., Zeng, G.M., Huang, D.L., Chen, Y., Liu, F., Huang, G.H. and Liu, H.L. (2006), "Remediation of pentachlorophenol-contaminated soil by composting with immobilized Phanerochaetechrysosporium", World J. Microbiol. Biotechnol., 22(9), 909-913. https://doi.org/10.1007/s11274-006-9134-4.   DOI
134 Iorhemen, O.T., Alfa, M.I. and Onoja, S.B. (2016), "The review of municipal solid waste management in Nigeria: The current trends", Adv. Environ. Res., 5(4), 237-249. http://doi.org/10.12989/aer.2016.5.4.237.   DOI