DOI QR코드

DOI QR Code

Biological Treatment of Livestock Wastewater using Aerobic Granular Sludge

호기성 그래뉼 슬러지를 이용한 축산폐수의 생물학적 처리에 관한 연구

  • Received : 2023.04.14
  • Accepted : 2023.06.16
  • Published : 2023.07.31

Abstract

In this study, the treatment of livestock wastewater using an aerobic granular sludge based sequencing batch reactor was investigated. The reactor operation was carried out by general injection and split injection methods. The average removal efficiency of organic matter after the adaptation period was 71.5 and 87.4%, respectively. Some untreated organic matter was attributed to recalcitrant organic matter. The average removal efficiency of total nitrogen was 65.6 and 88.4%, respectively. These results indicate that the denitrification reaction by split injection was carried out smoothly. As for the solids, the ratio of aerobic granular sludge/mixed liquor suspended solid can be determined as the main factor of the process operation, and the ratio increased gradually and finally reached 86.0%. Correspondingly, the sludge volume index (SVI) was also improved, reaching 54 mL/g at the end of operation, and it is believed that the application of a short settling time contributed to the improvement of settleability.

Keywords

Acknowledgement

본 논문은 경기도형 연구자 중심의 R&D지원(과제번호#2022-011)에 의해 수행되었습니다.

References

  1. Adav, S. S., Lee, D. J., Lai, J. Y., 2009, Proteolytic activity in stored aerobic granular sludge and structural integrity, Bioresour. Technol., 100, 68-73. https://doi.org/10.1016/j.biortech.2008.05.045
  2. Alves, O. I. M., Araujo, J. M., Silva, P. M. J., Magnus, B. S., Gavazza, S., Florencio, L., Kato, M. T., 2022, Formation and stability of aerobic granular sludge in a sequential batch reactor for the simultaneous removal of organic matter and nutrients from low-strength domestic wastewater, Sci. Total. Environ., 843, 156988.
  3. American Public Health Association (APHA), 2008, Standard methods for the examination of water and wastewater, 21st edition, American public health association, Washington D.C., USA.
  4. Bassin, J. P., Tavares, D. C., Borges, R. C., Dezotti, M., 2019, Development of aerobic granular sludge under tropical climate conditions: the key role of inoculum adaptation under reduced sludge washout for stable granulation, J. Environ. Manag., 230, 168-182. https://doi.org/10.1016/j.jenvman.2018.09.072
  5. Carrera, P., Casero-Diaz, T., Castro-Barros, C. M., Mendez, R., Val del Rio, A., Mosquera-Corral, A., 2021, Features of aerobic granular sludge formation treating fluctuating industrial saline wastewater at pilot scale, J. Environ. Manage., 296, 113135.
  6. Chen, H., Yang, E., Tu, Z., Wang, H., Liu, K., Chen, J., Wu, S., Kong, Z., Hendrik Sanjaya, E., Yang, M., 2022, Dual inner circulation and multi-partition driving single-stage autotrophic nitrogen removal in a bioreactor, Bioresour. Technol., 355, 127261.
  7. Cho, K. J., Shin, S. G., Lee, J. Y., Koo, T. W., Kim, W., Hwang, S. H., 2016, Nitrification resilience and community dynamics of ammonia-oxidizing bacteria with respect to ammonia loading shock in a nitrification reactor treating steel wastewater, J. Biosci. Bioeng., 122, 196-202. https://doi.org/10.1016/j.jbiosc.2016.01.009
  8. dos Santos, A. F., Frutuoso, F. K. A., de Carvalho, C. D. A., Lira, V. N. S. A., Barros, A. R. M., dos Santos, A. B., 2022, Carbon source affects the resource recovery in aerobic granular sludge systems treating wastewater, Bioresour. Technol., 357, 127355.
  9. Elahinik, A., Haarsma, M., Abbas, B., Pabst, M., Xevgenos, D., van Loosdrecht, M. C. M., Pronk, M., 2022, Glycerol conversion by aerobic granular sludge, Water Res., 227, 119340.
  10. He, Q., Song, Q., Zhang, S., Zhang, W., Wang, H., 2018, Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sequencing batch reactor with mixed carbon sources: reactor performance, extracellular polymeric substances and microbial successions, Chem. Eng. J., 331, 841-849. https://doi.org/10.1016/j.cej.2017.09.060
  11. Jeong, M. K., Lee, Y. G., Choe, J. Y., 2022, Environmental impact of livestock industry: analysis and policy tasks, R929, Korea Rural Economic Institute, Naju, Korea.
  12. Jo, G. S., Hong, S. W., Kim, H. G., Zhuliping, Ahn, D. H., 2021, Removal of biological organics in high-salinity wastewater produced from methylcellulose production and subsequent changes in the microbial community, Environ. Eng. Res., 26, 200187.
  13. Kim, H. G., Ahn, D. H. 2019a, Effects of different hydraulic retention times on contaminant removal efficiency using aerobic granular sludge, J. Environ. Sci. Int., 28, 669-676. https://doi.org/10.5322/JESI.2019.28.8.669
  14. Kim, H. G., Ahn, D. H., 2019b, Study on the biological denitrification reaction of high-salinity wastewater using an aerobic granular sludge (AGS), J. Environ. Sci. Int., 28, 607-615. https://doi.org/10.5322/JESI.2019.28.7.607
  15. Kim, Y. J., Lee, S. H., 2009, A study on developing the effective management strategies for unregistered animal feeding operations, 2009-42, Gyeonggi Research Institute, Suwon, Korea.
  16. Kwon, G. T., Kim, H. G., Ahn, D. H., 2021, Effects of aerobic granular sludge separator on the stability of aerobic granular sludge (AGS), J. Environ. Sci. Int., 30, 1081-1092. https://doi.org/10.5322/JESI.2021.30.12.1081
  17. Kwon, G. T., Kim, H. G., Ahn, D. H., 2022, Optimal operational characteristics of wastewater treatment using hydrocyclone in a sequencing batch reactor process, J. Environ. Sci. Int., 31, 295-309. https://doi.org/10.5322/JESI.2022.31.4.295
  18. Lee, G. H., Kim, J. S., 1999, Treating swine wastewater by anaerobic bioreactors, Korean J. Environ. Agric., 18, 54-60.
  19. Lee, H., Shoda, M., 2008, Removal of COD and color from livestock wastewater by the Fenton method, J. Hazard. Mater., 153, 1314-1319. https://doi.org/10.1016/j.jhazmat.2007.09.097
  20. Lee, P. E., Lee, D. H., Kim, B. S., Hwang, Y. H., Lee, T. J., 2020, A Study on the improvement of nitrogen & phosphorus removal of a sequencing batch reactor with internal circulation and multi-step addition, J. Korean Soc. Environ. Eng., 42, 280-288. https://doi.org/10.4491/KSEE.2020.42.5.280
  21. Li, A. J., Yang, S. F., Li, X. Y., Gu, J. D., 2008, Microbial population dynamics during aerobic sludge granulation at different organic loading rates, Water Res., 42, 3552-3560. https://doi.org/10.1016/j.watres.2008.05.005
  22. Liang, Y., Li, D., Su, Q., Zhang, J., 2018, Performances and microbial characteristics of granular sludge for autotrophic nitrogen removal from synthetic and mainstream domestic, Chem. Eng. J., 338, 564-571. https://doi.org/10.1016/j.cej.2018.01.067
  23. Liu, L., Wang, Z., Yao, J., Sun, X., Cai, W., 2005, Investigation on the formation and kinetics of glucose-fed aerobic granular sludge, Enzyme Microb. Technol., 36, 712-716. https://doi.org/10.1016/j.enzmictec.2004.12.024
  24. Mishra, S., Singh, A. K., Cheng, L., Hussain, A., Maiti, A., 2023, Occurrence of antibiotics in wastewater: Potential ecological risk and removal through anaerobic-aerobic systems, Environ. Res., 226, 115678.
  25. Miyake, M., Hasebe, Y., Furusawa, K., Shiomi, H., Inoue, D., Ike, M., 2023, Pilot-scale demonstration of aerobic granular sludge augmentation applied to continuous-flow activated sludge process for the treatment of low-strength municipal wastewater, J. Water Process Eng., 51, 103392.
  26. Mo, W. J., Kim, H. Y., Choi, H. N., 2019, The operation characteristics of advanced sewage treatment process using aerobic granular gludge in pilot plant, J. Korean Soc. Environ. Eng., 41, 61-68. https://doi.org/10.4491/KSEE.2019.41.2.61
  27. Mourao, J. M. M., de Oliveira, M. G., Almeida, M. K. D. S., dos Santos, A. B., Pereira, E. L., 2021, Post-treatment of swine wastewater using aerobic granular sludge: Granulation, microbiota development, and performance, Bioresour. Technol. Rep., 16, 100862.
  28. Qiu, B., Liao, G., Wu, C., Dai, C., Bin, L., Gao, X., Zhao, Y., Li, P., Huang, S., Fu, F., Tang, B., 2022, Rapid granulation of aerobic granular sludge and maintaining its stability by combining the effects of multi-ionic matrix and bio-carrier in a continuous-flow membrane bioreactor, Sci. Total Environ., 813, 152644.
  29. Rosman, N. H., Anuar, A. N., Chelliapan, S., Din, M. F. M., Ujang, Z., 2014, Characteristics and performance of aerobic granular sludge treating rubber wastewater at different hydraulic retention time, Bioresour. Technol., 161, 155-161. https://doi.org/10.1016/j.biortech.2014.03.047
  30. Szabo, E., Hermansson, M., Modin, O., Persson, F., Wilen, B. M., 2016, Effects of wash-out dynamics on nitrifying bacteria in aerobic granular sludge during start-up at gradually decreased settling time, Water, 8, 172.
  31. Tang, J., Pu, Y., Zeng, T., Hu, Y., Huang, J., Pan, S., Wang, X. C., Li, Y., Abomohra, A. E. F., 2022, Enhanced methane production coupled with livestock wastewater treatment using anaerobic membrane bioreactor: Performance and membrane filtration properties, Bioresour. Technol., 345, 126470.
  32. Tang, R., Han, X. S., Jin, Y., Yu, J. G., 2022, Do increased organic loading rates accelerate aerobic granulation in hypersaline environment?, J. Environ. Chem. Eng., 10, 108775. 
  33. Tay, J. H., Pan, S., He, Y. X., Tay, S. T. L., 2004, Effect of organic loading rate on aerobic granulation. I: Reactor performance, J. Environ. Eng., 130, 1094-1101. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:10(1094)
  34. Wan, C. L., Lee, D. J., Yang, X., Wang, Y. Y., Wang, X. Z., Liu, X., 2015, Calcium precipitate induced aerobic granulation, Bioresour. Technol., 176, 32-37. https://doi.org/10.1016/j.biortech.2014.11.008
  35. Wei, H., Hassan, M., Che, Y., Peng, Q., Wang, Q., Su, Y., Xie, B., 2021, Spatio-temporal characteristics and source apportionment of water pollutants in upper reaches of Maotiao River, Southwest of China, from 2003 to 2015, J. Environ. Inform., 37, 93-106.
  36. Won, C. H., Kwon, J. H., Rim, J. M., 2009, Effect of ammonia nitrogen loading rate on the anaerobic digestion of slurry-typed swine wastewater, J. of KORRA, 17, 49-57.
  37. Yae, J. B., Ryu, J. H., Hong, S. W., Kim, H. G., Ahn, D. H., 2018, Applicability of the SBR Process using aerobic granular sludge (AGS) in municipal wastewater treatment, J. Environ. Sci. Int., 27, 233-240. https://doi.org/10.5322/JESI.2018.27.4.233