• Title/Summary/Keyword: Real-time execution

Search Result 541, Processing Time 0.023 seconds

An Elliptic Curve Cryptosystem based on Trust and RBAC to Reduce Security Overhead in Sensor Networks (센서네트워크의 보안 오버헤드를 줄이기 위한 신뢰와 RBAC 기반의 타원곡선암호)

  • Kim, Hyojin;Park, Ho-Hyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.11
    • /
    • pp.747-756
    • /
    • 2013
  • It is important to reduce unnecessary overhead in sensor network using battery. In addition encryption is important because of necessity of security. Since unavoidable overhead occurs in case of encryption, security and overhead are in trade-off condition. In this paper, we use a concept called trust to reduce the encryption overhead. We reduce overhead by controlling encryption key sizes while maintaining the security level where high and low trust nodes are mixed. We simulated and compared normal encryption and trust value based encryption. As a result, the latter has lower execution time and overhead. If we define a standard of trust levels considering purpose and circumstances of real network, we can use constrained resources efficiently in sensor network.

Design of Information Acquisition System for Equipments on Shop Floor (생산현장의 유연성 및 다양성을 지원하기 위한 설비정보 수집 시스템의 설계)

  • Lee, Jai-Kyung;Lee, Seung-Woo;Nam, So-Jeong;Park, Jong-Kweon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.39-45
    • /
    • 2011
  • The processes for manufacturing a product differ depending on the characteristics of the product, and the information used or generated by the processes also varies. To implement a flexible and configurable Manufacturing Execution System (MES), a Data Acquisition System (DAS) that takes into consideration the characteristics of the manufacturing system is required. In this study, we design an information acquisition system that can process the information on equipments of a shop floor in real-time and that is adaptive to the changes in the shop floor. The system has a data parser module for flexible processing of the equipment status, a data mapper module to link the equipment status with a manufacturing process, and an SOA-based data integration module to transmit the processed information to other information systems such as MES and ERP. From the results of pilot study, its maintenance is easy even if new equipment or new manufacturing processes are adopted or if the equipments are rearranged.

Design of Special Function Unit for Vectorized SIMD Programmable Unified Shader (벡터화된 SIMD 프로그램어블 통합 셰이더를 위한 특수 함수 유닛 설계)

  • Jung, Jin-Ha;Kim, Kyeong-Seob;Yun, Jeong-Hee;Seo, Jang-Won;Choi, Sang-Bang
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.5
    • /
    • pp.56-70
    • /
    • 2010
  • Rendering technique generating 2 dimensional image to give reality and high performance graphical processor for efficient processing of massive data are necessary to support realistic 3 dimensional graphical image. Recently, graphical hardwares have evolved rapidly. This enables high quality rendering effect that we were unable to process in realtime. Improving shading technique enabled us to render realistic images but still much time is required for this process. Multiple operational units are being integrated in a graphical processor for effective floating point operation using massive data to process almost real looking images. In this paper, we have designed and implemented a special functional unit to support high quality 3 dimensional computer graphic image on programmable integrated shader processor. We have done evaluation through functional level simulation of designed special functional unit. Hardware resource usage rate and execution speed are measured implementing directly on FPGA Virtex-4(xc4vlx200).

Effect of Transcranial Direct Current Stimulation on Movement Variability in Repetitive - Simple Tapping Task

  • Kwon, Yong Hyun;Cho, Jeong Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.38-42
    • /
    • 2015
  • Purpose: Accuracy and variability of movement in daily life require synchronization of muscular activities through a specific chronological order of motor performance, which is controlled by higher neural substrates and/or lower motor centers. We attempted to investigate whether transcranial direct current stimulation (tDCS) over primary sensorimotor areas (SM1) could influence movement variability in healthy subjects, using a tapping task. Methods: Twenty six right-handed healthy subjects with no neurological or psychiatric disorders participated in this study. They were randomly and equally assigned to the real tDCS group or sham control group. Direct current with intensity of 1 mA was delivered over their right SM1 for 15 minutes. For estimation of movement variability before and after tDCS, tapping task was measured, and variability was calculated as standard deviation of the inter-tap interval (SD-ITI). Results: At the baseline test, there was no significant difference in SD-ITI between the two groups. In two-way ANOVA with repeated measurement no significant differences were found in a large main effect of group and interaction effect between two main factors (i.e., group factor and time factor (pre-post test)). However, significant findings were observed in a large main effect of the pre-post test. Conclusion: Our findings showed that the anodal tDCS over SM1 for 15 minutes with intensity of 1 mA could enhance consistency of motor execution in a repetitive-simple tapping task. We suggest that tDCS has potential as an adjuvant brain facilitator for improving rhythm and consistency of movement in healthy individuals.

Dynamic Voltage Scaling Technique Considering Application Characteristics (응용 프로그램 특성을 고려한 동적 전압 조절 기법)

  • Cho, Young-Jin;Chang, Nae-Hyuck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.96-104
    • /
    • 2009
  • In the real system environments, the performance of the application is not linearly proportional to the clock frequency of the microprocessor, in contrast to the general assumption of conventional dynamic voltage scaling. In this paper, we analytically model the relation between the performance of the application and the clock frequency of the microprocessor, and introduce the energy-optimal scheduling algorithm for a task set with distinct application characteristics. In addition, we present a theorem for the energy-optimal scheduling, which the derivative of the energy consumption with respect to the execution time should be the same for all the tasks. The proposed scheduling algorithm always generates the energy-optimal scaling factor thanks to the theorem for energy-optimal scheduling. We achieved about 7% additional energy reduction in the experiments using synthetic task sets.

NoC Energy Measurement and Analysis with a Cycle-accurate Energy Measurement Tool for Virtex-II FPGAs (네트워크-온-칩 설계의 전력 소모 분석을 위한 Virtex-II FPGA의 싸이클별 전력 소모 측정 도구 개발)

  • Lee, Hyung-Gyu;Chang, Nae-Hyuck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.86-94
    • /
    • 2007
  • The NoC (network-on-chip) approach is a promising solution to the increasing complexity of on-chip communication problems because of its high scalability. But, NoC applications generally consume a lot of power, because they require a large design space to accommodate many parallel IPs and network communication channels. It is not easy to analyze the power consumption of NoC applications with conventional simulation methods using simple power models. In addition, there are also many limitations in using sophisticated simulation models because they require long execution time and large efforts. In this paper, we apply a cycle-accurate energy measurement technique and tool to the FPGA prototypes, which are generally used to verify the correctness of SoC designs, as a practical indication of the power consumption of real NoC applications. An NoC-based JPEG encoder implementation is used as a case study to demonstrate the effectiveness of our approach.

Efficient Execution of Range Mosaic Queries (범위 모자이크 질의의 효율적인 수행)

  • Hong, Seok-Jin;Bae, Jin-Uk;Lee, Suk-Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.5
    • /
    • pp.487-497
    • /
    • 2005
  • A range mosaic query returns distribution of data within the query region as a pattern of mosaic, whereas a range aggregate query returns a single aggregate value of data within the query region. The range mosaic query divides a query region by a multi-dimensional grid, and calculates aggregate values of grid cells. In this paper, we propose a new type of query, range mosaic query and a new operator, mosaic-by, with which the range mosaic queries can be represented. In addition, we suggest efficient algorithms for processing range mosaic queries using an aggregate R-tree. The algorithm that we present computes aggregate results of every mosaic grid cell by one time traversal of the aggregate R-tree, and efficiently executes the queries with only a small number of node accesses by using the aggregate values of the aggregate R-tree. Our experimental study shows that the range mosaic query algorithm is reliable in terms of performance for several synthetic datasets and a real-world dataset.

One-Snapshot Algorithm for Secure Transaction Management in Electronic Stock Trading Systems (전자 주식 매매 시스템에서의 보안 트랜잭션 관리를 위한 단일 스냅샷 알고리즘)

  • 김남규;문송천;손용락
    • Journal of KIISE:Databases
    • /
    • v.30 no.2
    • /
    • pp.209-224
    • /
    • 2003
  • Recent development of electronic commerce enables the use of Electronic Stock Trading Systems(ESTS) to be expanded. In ESTS, information with various sensitivity levels is shared by multiple users with mutually different clearance levels. Therefore, it is necessary to use Multilevel Secure Database Management Systems(MLS/DBMSs) in controlling concurrent execution among multiple transactions. In ESTS, not only analytical OLAP transactions, but also mission critical OLTP transactions are executed concurrently, which causes it difficult to adapt traditional secure transaction management schemes to ESTS environments. In this paper, we propose Secure One Snapshot(SOS) protocol that is devised for Secure Transaction Management in ESTS. By maintaining additional one snapshot as well as working database SOS blocks covert-channel efficiently, enables various real-time transaction management schemes to be adapted with ease, and reduces the length of waiting queue being managed to maintain freshness of data by utilizing the characteristics of less strict correctness criteria. In this paper, we introduce the process of SOS protocol with some examples, and then analyze correctness of devised protocol.

A Development of Multi-Sensors LED Streetlight Lighting Control System Based on RTOS (RTOS 기반의 다중센서 LED 가로등 점등제어 시스템 설계)

  • In, Chi-Goog;Lin, Chi-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1020-1026
    • /
    • 2012
  • In this paper, we proposed a RTOS-based lighting control system to improve energy efficiency. This proposed system, real time process was designed to the specified division of the LED streetlight control module for the RTOS-based lighting control into three different tasks. The first task transmits LED lighting signal by measuring illuminance, and the second task transmits motion detecting signal using motion detector. In the third task, lighting control to LED was designed through passed control signal from other tasks The execution status was examined ports that are directly to the ATmega128 MCU for the verification of the system, and illuminance distribution and operating conditions were verified through LED street field test. The proposed RTOS-based lighting control system has brought improving system performance and also facilitate an addition of other functions, and it was possible to optimize energy saving by intelligent lighting pattern control.

DSLA: Dynamic Sampling Localization Algorithm Based on Virtual Anchor Node

  • Chen, Yanru;Yan, Bingshu;Wei, Liangxiong;Guo, Min;Yin, Feng;Luo, Qian;Wang, Wei;Chen, Liangyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4940-4957
    • /
    • 2019
  • Compared with the localization methods in the static sensor networks, node localization in dynamic sensor networks is more complicated due to the mobility of the nodes. Dynamic Sampling Localization Algorithm Based on Virtual Anchor (DSLA) is proposed in this paper to localize the unknown nodes in dynamic sensor networks. Firstly, DSLA algorithm predicts the speed and movement direction of nodes to determine a sector sampling area. Secondly, a method of calculating the sampling quantity with the size of the sampling area dynamically changing is proposed in this paper. Lastly, the virtual anchor node, i.e., the unknown node that got the preliminary possible area (PLA), assists the other unknown nodes to reduce their PLAs. The last PLA is regarded as a filtering condition to filter out the conflicting sample points quickly. In this way, the filtered sample is close to its real coordinates. The simulation results show that the DSLA algorithm can greatly improve the positioning performance when ensuring the execution time is shorter and the localization coverage rate is higher. The localization error of the DSLA algorithm can be dropped to about 20%.