• Title/Summary/Keyword: Real-time data acquisition

Search Result 452, Processing Time 0.037 seconds

Design of an effective real-time data acquisition system (효율적인 실시간 데이터 수집시스템의 설계)

  • 김동욱;염재명;김대원;박용식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1036-1039
    • /
    • 1996
  • The performance of real-time systems depends upon how well the tasks are scheduled within a cycle time and how fastly the response is made according to the occurrence of an external event. This paper presents the design of an effective real-time data acquisition system in order to gather the data from an automobile engine. This paper investigates an estimation and a restriction method of execution for aperiodic data. Also, the guarantee problem of real-time constraint is presented for periodic data. Through the experiments, the hard real-time guarantee problem of periodic data is studied and the damage problem of periodic data according to the increase of aperiodic tasks is analyzed.

  • PDF

Review on Data Acquisition of Renewable Power Generators (신재생발전기의 데이터 취득방안에 대한 고찰)

  • Lee, Bong-Kil;Kim, Wan-Hong;Choi, Joon-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.3
    • /
    • pp.1-20
    • /
    • 2020
  • In accordance with the Government's policy, renewable power generation is expanding very largely. This leads to increasing uncertainty in the power market and power system owing to the intermittent and fluctuating output characteristics of renewable power generators. Data on the acquisition of renewable power generators can be largely classified according to the operation of the power market and power system. Data on the settlement for the payment for the power amount are acquired in the power market, and real-time data for monitoring the status and output of the generators are acquired in the power system. However, renewable power generators operating in the power market have different acquisition cycles depending on the method of communication of the power meter. They acquire data only for settlement purposes and have no real-time data, which requires improvement. In this paper, the acquisition status is reviewed by classifying the data of renewable power generators into settlement and real-time data. In addition, measures and acquisition criteria for real-time data of renewable power generators for improving the acquisition method are proposed.

Real-time Acquisition of Three Dimensional NMR Spectra by Non-uniform Sampling and Maximum Entropy Processing

  • Jee, Jun-Goo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.2017-2022
    • /
    • 2008
  • Of the experiments to shorten NMR measuring time by sparse sampling, non-uniform sampling (NUS) is advantageous. NUS miminizes systematic errors which arise due to the lack of samplings by randomization. In this study, I report the real-time acquisition of 3D NMR data using NUS and maximum-entropy (MaxEnt) data processing. The real-time acquisition combined with NUS can reduce NMR measuring time much more. Compared with multidimensional decomposition (MDD) method, which was originally suggested by Jaravine and Orekhov (JACS 2006, 13421-13426), MaxEnt is faster at least several times and more suitable for the realtime acquisition. The designed sampling schedule of current study makes all the spectra during acquisition have the comparable resulting resolutions by MaxEnt. Therefore, one can judge the quality of spectra easily by examining the intensities of peaks. I report two cases of 3D experiments as examples with the simulated subdataset from experimental data. In both cases, the spectra having good qualitie for data analysis could be obtained only with 3% of original data. Its corresponding NMR measuring time was 8 minutes for 3D HNCO of ubiquitin.

Development of real-time wireless data measurement technique on Centrifugal experiment (원심모형 실험기의 실시간 무선데이터 측정시스템 구축)

  • Lee, Jong-Pil;Kim, You-Seok;Park, Jin-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1289-1293
    • /
    • 2010
  • A slipring or FORJ are usually adopted in order for power supply of Geo-centrifuge and input/output data acquisition. Since using slipring causes quite a lot electrical noise, an optical communication using FORJ becomes more general for data acquisition. Such data acquisition devices, however, require frequent maintenance and replacement due to deterioration by long term usage. DICT has set up a real-time wireless date acquisition system using wireless communication technology instead of FORJ. The system enables a remote measurement at any inertial acceleration field up to 100g level and provides as same performance as FORJ. The priority of this system is to use a normal modem substituting a special FORJ.

  • PDF

Implementation of FPGA-Based Real-Time data acquisition system for overhead contact wire (FPGA를 이용한 전차선로 실시간 계측시스템 구현)

  • Na, Hae-Kyung;Park, Young;Cho, Yong-Hyeon;Jung, Ho-Sung;Park, Hyun-Jun;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.531-532
    • /
    • 2006
  • This paper presents the implementation of Real-time data acquisition system for dynamic characteristics of overhead contact wire in electric railway. The reconfigurable field-programmable gate array (FPGA) and LabVIEW graphical development tools have been used to Real-time monitoring system. The results from a field test show that the proposed technique and developed system can be practically applied to measure the assessment quantity or quantities on overhead contact lines for the online real-time process monitoring.

  • PDF

Implementation of a Real-Time Data Acquisition System Based on Wireless Communication for Urban Rail Transit Substation (도시철도 변전소의 네트워크 기반 실시간 데이터 취득 시스템 구현)

  • Jung, Ho-Sung;Park, Young;Kim, Hyung-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.71-76
    • /
    • 2010
  • This paper is focused on implementing a real-time data acquisition system that checks power facility status by applying network based technology to Urban Transit substation power facilities and the results of its on-field tests. This system is composed of a sensor part, a measurement part, a transceiver part, a host computer, and a power source part. The system is designed to collect, save, analyze, and display the online state power facility AI (Analog Input). This system measures voltage and current from positive feeders and negative feeders where it is possible to check abnormalities of the substation‘s main power facilities. By monitoring abnormal data of the Urban Transit power facilities real-time and analyzing stored data, establishing procedures of optimized maintenance is possible.

A REAL-TIME REMOTE SENSING AND DATA ACQUISITION SYSTEM FOR A NUCLEAR POWER PLANT

  • Kim, Ki-Ho;Hieu, Bui Van;Beak, Seung-Hyun;Choi, Seung-Hwan;Son, Tae-Ha;Kim, Jung-Kuk;Han, Seung-Chul;Jeong, Tai-Kyeong
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.99-104
    • /
    • 2011
  • A Structure Health Monitoring (SHM) system needs a real-time remote data acquisition system to monitor the status of a structure from anywhere via Internet access. In this paper, we present a data acquisition system that monitors up to 40 Fiber Bragg Grating Sensors remotely in real-time. Using a TCP/IP protocol, users can access information gathered by the sensors from anywhere. An experiment in laboratory conditions has been done to prove the feasibility of our proposed system, which is built in special-purpose monitoring system.

Design and Implementation of a Hybrid Equipment Data Acquisition System(HEDAS) for Equipment Engineering System(EES) Framework (EES 프레임워크를 위한 하이브리드 생산설비 데이터 습득 시스템(HEDAS)의 설계 및 구현)

  • Kim, Gyoung-Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.167-176
    • /
    • 2012
  • In this paper we design and implement a new Hybrid Equipment Data Acquisition System (HEDAS) for data collection of semiconductor and optoelectronic manufacturing equipments in the equipment engineering system(EES) framework. The amount of the data collected from equipments have increased rapidly in equipment engineering system. The proposed HEDAS efficiently handles a large amount of real-time equipment data generated from EES framework. It also can support the real-time ESS applications as well as non real-time ESS applications. For the real-time EES applications, it performs high-speed real-time processing that uses continuous query and filtering techniques based on memory buffers. The HEDAS can optionally store non real-time equipment data using a HEDAS-based database or a traditional DBMS-based database. In particular, The proposed HEDAS offers the compression indexing based on the timestamp of data and query processing technique saving the cost of disks storage against extremely increasing equipment data. The HEDAS is efficient system to collect huge real-time and non real-time equipment data and transmit the collected equipment data to several EES applications in EES framework.

Real -Time ECG Signal Acquisition and Processing Using LabVIEW

  • Sharma, Akshay Kumar;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.162-171
    • /
    • 2020
  • The incidences of cardiovascular diseases are rapidly increasing worldwide. The electrocardiogram (ECG) is a test to detect and monitor heart issues via electric signals in the heart. Presently, detecting heart disease in real time is not only possible but also easy using the myDAQ data acquisition device and LabVIEW. Hence, this paper proposes a system that can acquire ECG signals in real time, as well as detect heart abnormalities, and through light-emitting diodes (LEDs) it can simultaneously reveal whether a particular waveform is in range or otherwise. The main hardware components used in the system are the myDAQ device, Vernier adapter, and ECG sensor, which are connected to ECG monitoring electrodes for data acquisition from the human body, while further processing is accomplished using the LabVIEW software. In the Results section, the proposed system is compared with some other studies based on the features detected. This system is tested on 10 randomly selected people, and the results are presented in the Simulation Results section.

A New Study on Vibration Data Acquisition and Intelligent Fault Diagnostic System for Aero-engine

  • Ding, Yongshan;Jiang, Dongxiang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.16-21
    • /
    • 2008
  • Aero-engine, as one kind of rotating machinery with complex structure and high rotating speed, has complicated vibration faults. Therefore, condition monitoring and fault diagnosis system is very important for airplane security. In this paper, a vibration data acquisition and intelligent fault diagnosis system is introduced. First, the vibration data acquisition part is described in detail. This part consists of hardware acquisition modules and software analysis modules which can realize real-time data acquisition and analysis, off-line data analysis, trend analysis, fault simulation and graphical result display. The acquisition vibration data are prepared for the following intelligent fault diagnosis. Secondly, two advanced artificial intelligent(AI) methods, mapping-based and rule-based, are discussed. One is artificial neural network(ANN) which is an ideal tool for aero-engine fault diagnosis and has strong ability to learn complex nonlinear functions. The other is data mining, another AI method, has advantages of discovering knowledge from massive data and automatically extracting diagnostic rules. Thirdly, lots of historical data are used for training the ANN and extracting rules by data mining. Then, real-time data are input into the trained ANN for mapping-based fault diagnosis. At the same time, extracted rules are revised by expert experience and used for rule-based fault diagnosis. From the results of the experiments, the conclusion is obvious that both the two AI methods are effective on aero-engine vibration fault diagnosis, while each of them has its individual quality. The whole system can be developed in local vibration monitoring and real-time fault diagnosis for aero-engine.

  • PDF