• Title/Summary/Keyword: Real-time Reasoning

Search Result 82, Processing Time 0.025 seconds

Improving Real-Time Efficiency of Case Retrieving Process for Case-Based Reasoning

  • Park, Yoon-Joo
    • Asia pacific journal of information systems
    • /
    • v.25 no.4
    • /
    • pp.626-641
    • /
    • 2015
  • Conventional case-based reasoning (CBR) does not perform efficiently for high-volume datasets because of case retrieval time. To overcome this problem, previous research suggested clustering a case base into several small groups and retrieving neighbors within a corresponding group to a target case. However, this approach generally produces less accurate predictive performance than the conventional CBR. This paper proposes a new case-based reasoning method called the clustering-merging CBR (CM-CBR). The CM-CBR method dynamically indexes a search pool to retrieve neighbors considering the distance between a target case and the centroid of a corresponding cluster. This method is applied to three real-life medical datasets. Results show that the proposed CM-CBR method produces similar or better predictive performance than the conventional CBR and clustering-CBR methods in numerous cases with significantly less computational cost.

Real-Time IoT Big-data Processing for Stream Reasoning (스트림-리즈닝을 위한 실시간 사물인터넷 빅-데이터 처리)

  • Yun, Chang Ho;Park, Jong Won;Jung, Hae Sun;Lee, Yong Woo
    • Journal of Internet Computing and Services
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2017
  • Smart Cities intelligently manage numerous infrastructures, including Smart-City IoT devices, and provide a variety of smart-city applications to citizen. In order to provide various information needed for smart-city applications, Smart Cities require a function to intelligently process large-scale streamed big data that are constantly generated from a large number of IoT devices. To provide smart services in Smart-City, the Smart-City Consortium uses stream reasoning. Our stream reasoning requires real-time processing of big data. However, there are limitations associated with real-time processing of large-scale streamed big data in Smart Cities. In this paper, we introduce one of our researches on cloud computing based real-time distributed-parallel-processing to be used in stream-reasoning of IoT big data in Smart Cities. The Smart-City Consortium introduced its previously developed smart-city middleware. In the research for this paper, we made cloud computing based real-time distributed-parallel-processing available in the cloud computing platform of the smart-city middleware developed in the previous research, so that we can perform real-time distributed-parallel-processing with them. This paper introduces a real-time distributed-parallel-processing method and system for stream reasoning with IoT big data transmitted from various sensors of Smart Cities and evaluate the performance of real-time distributed-parallel-processing of the system where the method is implemented.

Real-Time Vehicle Detector with Dynamic Segmentation and Rule-based Tracking Reasoning for Complex Traffic Conditions

  • Wu, Bing-Fei;Juang, Jhy-Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.12
    • /
    • pp.2355-2373
    • /
    • 2011
  • Vision-based vehicle detector systems are becoming increasingly important in ITS applications. Real-time operation, robustness, precision, accurate estimation of traffic parameters, and ease of setup are important features to be considered in developing such systems. Further, accurate vehicle detection is difficult in varied complex traffic environments. These environments include changes in weather as well as challenging traffic conditions, such as shadow effects and jams. To meet real-time requirements, the proposed system first applies a color background to extract moving objects, which are then tracked by considering their relative distances and directions. To achieve robustness and precision, the color background is regularly updated by the proposed algorithm to overcome luminance variations. This paper also proposes a scheme of feedback compensation to resolve background convergence errors, which occur when vehicles temporarily park on the roadside while the background image is being converged. Next, vehicle occlusion is resolved using the proposed prior split approach and through reasoning for rule-based tracking. This approach can automatically detect straight lanes. Following this step, trajectories are applied to derive traffic parameters; finally, to facilitate easy setup, we propose a means to automate the setting of the system parameters. Experimental results show that the system can operate well under various complex traffic conditions in real time.

Data Mining Approach for Real-Time Processing of Large Data Using Case-Based Reasoning : High-Risk Group Detection Data Warehouse for Patients with High Blood Pressure (사례기반추론을 이용한 대용량 데이터의 실시간 처리 방법론 : 고혈압 고위험군 관리를 위한 자기학습 시스템 프레임워크)

  • Park, Sung-Hyuk;Yang, Kun-Woo
    • Journal of Information Technology Services
    • /
    • v.10 no.1
    • /
    • pp.135-149
    • /
    • 2011
  • In this paper, we propose the high-risk group detection model for patients with high blood pressure using case-based reasoning. The proposed model can be applied for public health maintenance organizations to effectively manage knowledge related to high blood pressure and efficiently allocate limited health care resources. Especially, the focus is on the development of the model that can handle constraints such as managing large volume of data, enabling the automatic learning to adapt to external environmental changes and operating the system on a real-time basis. Using real data collected from local public health centers, the optimal high-risk group detection model was derived incorporating optimal parameter sets. The results of the performance test for the model using test data show that the prediction accuracy of the proposed model is two times better than the natural risk of high blood pressure.

Real-Time Rule-Based System Architecture for Context-Aware Computing (실시간 상황 인식을 위한 하드웨어 룰-베이스 시스템의 구조)

  • Lee, Seung-Wook;Kim, Jong-Tae;Sohn, Bong-Ki;Lee, Keon-Myung;Cho, Jun-Dong;Lee, Jee-Hyung;Jeon, Jae-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.587-592
    • /
    • 2004
  • Context-aware computing systems require real-time context reasoning process for context awareness. Context reasoning can be done by comparing input information from sensors with knowledge-base within system. This method is identical with it of rule-based systems. In this paper, we propose hardware rule-based system architecture which can process context reasoning in real-time. Compared to previous architecture, hardware rule-based system architecture can reduce the number of constraints on rule representations and combinations of condition terms in rules. The modified content addressable memory, crossbar switch network and pre-processing module are used for reducing constraints. Using SystemC for description can provide easy modification of system configuration later.

Intelligence Transportation Safety Information System

  • Hong, YouSik;Park, Chun Kwan;Cho, Seongsoo;Hong, Suck-Joo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.6 no.2
    • /
    • pp.20-24
    • /
    • 2014
  • These days the large-scale car accidents have often been occurred by overspeeding in disregard of sharp curve, foggy and freezing regions. This paper has proposed the algorithm to calculate the safety speed in real time that can protect the car accidents under these weather and road conditions using Fuzzy reasoning theory. Under raining and snowing, drivers have to slow down the traffic safety speed by 1/3 of the traffic safety speed indicated on the existing speed sign plate based on their decision. So it is difficult to calculate and then observe the safety speed. This paper has performed the simulation that provides the deivers with the optimal safety speed considering the road and weather conditions in real time to improve these problems. We have proved this method can improve more 25% than the existing one.

A Study on Predictive Fuzzy Control Algorithm for Elevator Group Supervisory System (엘리버이터 군관리 시스템을 위한 예견퍼지 제어 알고리즘에 관한 연구)

  • Choi, Don;Park, Hee-Chul;Woo, Kang-Bang
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.627-637
    • /
    • 1994
  • In this study, a predictive fuzzy control algorithm to supervise the elevator system with plural cars is developed and its performance is evaluated. The proposed algorithm is based on fuzzy in-ference system to cope with multiple control objects and uncertainty of system state. The control objects are represented as linguistic predictive fuzzy rules and simplified reasoning method is utilized as a fuzzy inference method. Real-time simulation is performed with respect o all possible modes of control, and the resultant controls ard predicted. The predicted rusults are then utilized as the control in-puts of the fuzzy rules. The feasibility of the proposed control algorithm is evaluated by graphic simulator on computer. Finallu, the results of graphic simulation is compared with those of a conventional group control algorighm.

  • PDF

A study for the real-time acquirement of cutting process control limit based on geometrical relations (기하학적 관계를 바탕으로 한 가공공정 관리한계의 실시간 획득에 관한 연구)

  • Hong, Jun-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.82-91
    • /
    • 1995
  • The purpose of this research is to develop a new real-time process control system. In this paper, a theoretical method for acquiring the control limit of cutting process(cutting surface) according to the required value(geometric tolerance) based on geometrical relations was propsed. In particular, the three following points are amphasized. Firstly, the process control was based on the cutting process, and the control limit was determined from the analysis of geometrical relations. Secondly, AMGD(Actual Measured Geometrical Deviation) was used as a new substitute value in process analysis. Thirdly, fuzzy reasoning was introduced to get the control limit flexibility according to the variations in the required value and general consideration of each measurememnt items.

  • PDF

Real-time Stability Assessment and Energy Margin Estimation using Fuzzy (퍼지를 이용한 실시간 안정도 판별과 에너지 마진의 추정)

  • Choi, Won-Chan;Kim, Soo-Nam;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1239-1241
    • /
    • 1999
  • In this paper, we propose real time transient stability assessment and energy margin estimation using fuzzy approximate reasoning. The proposed method used rotor angle, kinetic energy and acceleration power of generators at clearing time as fuzzy input. In order to calculate energy margin in transient energy function (TEF), we obtained controlling unstable equilibrium point (UEP) using mode of disturbance procedure (MOD). The proposed algorithm is tested on 4-machine, 6-bus, 7-line power system to prove of effectiveness.

  • PDF

Development of the Context-Aware System for Senior Citizen based on Case-Based Reasoning (고령자를 위한 사례기반추론에 기반한 상황인식 시스템 개발)

  • Kim, Jung-Sook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.419-424
    • /
    • 2015
  • The entry of an aging society require a safety of senior citizens against emergency. However, a home and a residence of senior citizens should not consider a characteristic of safety and the unfortunate accidents could happen in the house or the residence. Especially if the elders live alone then they have a help function using a call button in a bathroom or a closed area. But, a sliding or an overbalance in a bathroom or a closed area of a home may happen suddenly how can require a help in real time. That is a very serious accident to senior citizens. In this paper, we developed the context-aware system using the various sensors for collecting the data which is an activities of daily living of elders and we designed the recognition method using case-based reasoning for detecting the anomaly and the emergency context in the bathroom or the closed area in house. After that, if the anomaly or the emergency are detected then it call to a family or a relative or an administration in real-time.