• Title/Summary/Keyword: Real-time Operating System

Search Result 1,063, Processing Time 0.028 seconds

Deadline Handling in Real-Time Distributed Object Oriented Programming of TMO

  • Kim, Hee-Chul;Na, Sang-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.6
    • /
    • pp.863-872
    • /
    • 2002
  • Real-time(RT) object-oriented(00) distributed computing is a form of RT distributed computing realized with a distributed computer system structured in the form of an object network. Several approached proposed in recent years for extending the conventional object structuring scheme to suit RT applications, are briefly reviewed. Then the approach named the TMO(Time-triggered Message-triggered Object) structuring scheme was formulated with the goal of instigating a quantum productivity jump in the design of distributed time triggered simulation. The TMO scheme is intended to facilitate the pursuit of a new paradigm in designing distributed time triggered simulation which is to realize real-time computing with a common and general design style that does not alienate the main-stream computing industry and yet to allow system engineers to confidently produce certifiable distributed time triggered simulation for safety-critical applications. The TMO structuring scheme is a syntactically simple but semantically powerful extension of the conventional object structuring approached and as such, its support tools can be based on various well-established 00 programming languages such as C++ and on ubiquitous commercial RT operating system kernels. The Scheme enables a great reduction of the designers efforts in guaranteeing timely service capabilities of application systems.

The Design and Implementation of C Standard Library for RTOS Q+ (실시간 운영체계 Q+를 위한 C 표준 라이브러리 설계 및 구현)

  • Kim, Do-Hyeong;Park, Seung-Min
    • The KIPS Transactions:PartA
    • /
    • v.8A no.1
    • /
    • pp.1-8
    • /
    • 2001
  • This paper describes the design and implementation of C standard library for real-time operating system Q+, that is being developed for the internet appliance. The C library in the real-time operating system should be defined according to the standard interface and support the concurrent execution of threads. The implemented C standard library is reentrant and follows POSIX.l standard interface. And, the C standard library functions, which are adequate to the Q+ application and commonly provided by commercial real-time operating systems, are selected among POSIX.l standard functions. The C standard library is implemented on the Q+ kernel and D-TV set-top box according to the implementation sequence, which is determined by analyzing the relation of function calls.

  • PDF

Joint Space Trajectory Planning on RTOS (실시간 운영체제에서 관절 공간 궤적 생성)

  • Yang, Gil-Jin;Choi, Byoung-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.52-57
    • /
    • 2014
  • This paper presents an implementation of a smooth path planning method considering physical limits on a real time operating system for a two-wheel mobile robot. A Bezier curve is utilized to make a smooth path considering a robot's position and direction angle through the defined path. A convolution operator is used to generate the center velocity trajectory to travel the distance of the planned path while satisfying the physical limits. The joint space velocity is computed to drive the two-wheel mobile robot from the center velocity. Trajectory planning, velocity command according to the planned trajectory, and monitoring of encoder data are implemented with a multi-tasking system. And the synchronization of tasks is performed with a real-time mechanism of Event Flag. A real time system with multi-tasks is implemented and the result is compared with a non-real-time system in terms of path tracking to the designed path. The result shows the usefulness of a real-time multi-tasking system to the control system which requires real-time features.

A Design and Implementation of the Real-Time VoIP Terminal System Based on Linux (리눅스 기반 실시간 처리 VoIP 단말기 시스템의 설계 및 구현)

  • Lee, Myeong-Geun;Lee, Sang-Jeong;Seo, Jeong-Min;Im, Jae-Yong
    • The KIPS Transactions:PartA
    • /
    • v.8A no.4
    • /
    • pp.345-352
    • /
    • 2001
  • In this paper, a VoIP (Voice on Internet Protocol) terminal system, which can process voice in real time based on Linux, is designed and implemented. The hardware of it is designed using a i486 processor and a DSP codec chip which encodes and decodes voice data in real time. As an operating system, RTLinux, which is a real-time operating system based on Linux, is ported to manage real-time voice processing. The voice processing module of the system uses G.723.1 voice codec of ITU-T standard. It transfers voice data within 30ms to assure good voice quality. In order to satisfy the real time requirements and QoS (Quality-of-Service) for the voice data, the real-time voice processing device driver is designed and implemented. To verify the system, the chatting application program is developed and tested for QoS of the system.

  • PDF

Design Technique and Application for Distributed Recovery Block Using the Partitioning Operating System Based on Multi-Core System (멀티코어 기반 파티셔닝 운영체제를 이용한 분산 복구 블록 설계 기법 및 응용)

  • Park, Hansol
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.357-365
    • /
    • 2015
  • Recently, embedded systems such as aircraft and automobilie, are developed as modular architecture instead of federated architecture because of SWaP(Size, Weight and Power) issues. In addition, partition operating system that support multiple logical node based on partition concept were recently appeared. Distributed recovery block is fault tolerance design scheme that applicable to mission critical real-time system to support real-time take over via real-time synchronization between participated nodes. Because of real-time synchronization, single-core based computer is not suitable for partition based distributed recovery block design scheme. Multi-core and AMP(Asymmetric Multi-Processing) based partition architecture is required to apply distributed recovery block design scheme. In this paper, we proposed design scheme of distributed recovery block on the multi-core based supervised-AMP architecture partition operating system. This paper implements flight control simulator for avionics to check feasibility of our design scheme.

Designing of Network based Tiny Ubiquitous Networked Systems (네트워크 기반의 소형 유비쿼터스 시스템의 개발)

  • Hwang, Kwang-Il;Eom, Doo-Seop
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.3
    • /
    • pp.141-152
    • /
    • 2007
  • In this paper, we present a network-oriented lightweight real-time system, which is composed of an event-driven operating system called the Embedded Lightweight Operating System (ELOS) and a generic multi hop ad hoc routing protocol suite. In the ELOS, a conditional preemptive FCFS scheduling method with a guaranteed time slot is designed for efficient real-time processing. For more elaborate configurations, we reinforce fault tolerance by supplementing semi-auto configuration using wireless agent nodes. The developed hardware platform is also introduced, which is a scalable prototype constructed using off-the-shelf components. In addition, in order to evaluate the performance of the proposed system, we developed a ubiquitous network test-bed on which several experiments with respect to various environments are conducted. The results show that the ELOS is considerably favorable for tiny ubiquitous networked systems with real-time constraints.

Study on Web Services Middleware for Real-Time Monitoring in the IoT Environment

  • Shin, Seung-Hyeok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.97-104
    • /
    • 2015
  • Recently, the need for real-time systems which are providing various types of information that occur in large quantities in IoT environment is increasing. In this paper, we propose a middleware system which can monitor in real time on a web environment. The proposed system is designed to be integrated by using communication functions provided by a network operating system and external sensors. The proposed system is compared with an existing system and analysed by the server performance testing tool.

[ ${\mu}TMO$ ] Model based Real-Time Operating System for Sensor Network (${\mu}TMO$ 모델 기반 실시간 센서 네트워크 운영체제)

  • Yi, Jae-An;Heu, Shin;Choi, Byoung-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.12
    • /
    • pp.630-640
    • /
    • 2007
  • As the range of sensor network's applicability is getting wider, it creates new application areas which is required real-time operation, such as military and detection of radioactivity. However, existing researches are focused on effective management for resources, existing sensor network operating system cannot support to real-time areas. In this paper, we propose the ${\mu}TMO$ model which is lightweight real-time distributed object model TMO. We design the real-time sensor network operation system ${\mu}TMO-NanoQ+$ which is based on ETRI's sensor network operation system Nano-Q+. We modify the Nano-Q+'s timer module to support high resolution and apply Context Switch Threshold, Power Aware scheduling techniques to realize lightweight scheduler which is based on EDF. We also implement channel based communication way ITC-Channel and periodic thread management module WTMT.

Real-time user behavior monitoring technique in Linux environment (Linux 환경에서 사용자 행위 모니터링 기법 연구)

  • Sung-Hwa Han
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.3-8
    • /
    • 2022
  • Security threats occur from the outside, but more often from the inside. In particular, since the internal user knows about the information service, the security threat damage caused by the internal user is greater. In this environment, the actions of all users accessing information services should be monitored and recorded in real-time. However, the current operating system records only the logs of system and application execution, so there is a limit to monitoring user behavior in real-time. In such a security environment, damage may occur due to user's unauthorized actions. To solve this problem, this study proposes an architecture that monitors user behavior in real-time in a Linux environment. As a result of verifying the function to confirm the effectiveness of the proposed architecture, the console input values and output angles of all users who have access to the operating system are monitored in real-time and stored. Although the performance of the proposed architecture is somewhat slower than the identification and authentication functions provided by the operating system, it was confirmed that the performance was not at a level that users would recognize, and thus it was judged to be sufficiently effective. However, since this study focuses on monitoring the console behavior, it is impossible to monitor the behavior of user applications running in the background, so additional research is needed.

Design Scheme of A Micro Real-Time Control System with CAN and RTOS (CAN과 RTOS를 내장한 소형 실시간 시스템 설계 기법)

  • Lim, Young-Gyu;Kim, Dong-Seoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.207-215
    • /
    • 2014
  • In this paper, we propose a Micro Real-Time Control System (MRTCS) for decreasing the delay during interrupts processing and data transfer on sensor nodes. The MRTCS consists of a control, sensor nodes based on Controller Area Network (CAN) device. The control node was designed with Real Time Operating System (RTOS) on top of the small Micro Control Unit (sMCU). Sensor nodes have the CAN device without sMCU, which have multiple Digital Inputs, Outputs (DI/DO) and the CAN controller. We have evaluated with OCTAVE v3.6.4 from open source for system performance. Simulation results show that the system performance was increased through the delay reducing for interrupt processing and internal data transfer. We verify that a proposed MRTCS approach will be adapted to various real-time control system.