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ABSTRACT

Real-time(RT) object-oriented(Q0) distributed computing is a form of RT distributed computing realized with a
distributed computer system structured in the form of an object network. Several approached proposed in recent
years for extending the conventional object structuring scheme to suit RT applications, are briefly reviewed. Then
the approach named the TMO(Time-triggered Message-triggered Object)structuring scheme was formulated with the
goal of instigating a quantum productivity jump in the design of distributed time triggered simulation. The TMO
scheme is intended to facilitate the pursuit of a new paradigm in designing distributed time triggered simulation
which is to realize real-time computing with a common and general design style that does not alienate the
main-stream computing industry and yet to allow system engineers to confidently produce certifiable distributed
time triggered simulation for safety-critical applications. The TMO structuring scheme is a syntactically simple but
semantically powerful extension of the conventional object structuring approached and as such, its support tools can
be based on various well-established OO programming languages such as C++ and on ubiquitous commercial RT
operating system kernels. The Scheme enables a great reduction of the designers efforts in guaranteeing timely
service capabilities of application systems.
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| . Introduction

One of the computer application fields which
started showing noticeable new growth trends in
recent years is the real-time(RT)
application field. Future RT computing must be
realized in the form of a generalization of the

computing

non-RT computing, rater than in a form looking
like an esoteric specialization.

In other words, under a properly established
RT system engineering methodology, every
practically useful non-RT computer system must
be realizable by simply filling the time constraint

specification part with unconstrained default

values. The current reality in RT computing is
this this is
evidenced whether one looks at the subfield of

far from desirable state and
operating systems or that of software/system
engineering tolls[1,2,34].

Another issue of growing importance is to
provide in the future an order-of-magniture
higher degree of assurance on the reliability of
distributed time triggered simulation products
than what is provided today(56]. To require the
system engineer to produce design-time guarantees
for timely service capabilities of various subsystems
which will take the form of objects in OO

system designs.
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The major factor that has discouraged any
attempt to do this has been the use of software
structuring approaches and program execution
mechanisms and modes which were devised to
maximize hardware utilization but at the cost of
increasing the difficulty of analyzing the temporal
behavior of the RT computation performed.

Most concerns were given to the issue of how
to maximally utilize uniprocessor hardware even
at the cost of losing service quality predictability.

System engineers were more willing to ignores
a small percentage of peak-load situations which
can occur and can lead to excessively delayed
response of distributed time triggered simulation,
hardware-consuming

instead of wusing more

design approaches for producing timeliness-

guaranteed systems.

Il. General framework for systematic deadlin
handling
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Fig. 1 depicts the relationship between a client
and a server component in a system composed of
hard real time components which are structured
as distributed computing objects.

The client object in the middle of executing its
method, Method 1, calls for a service, Method 7
service, from the server object. In order to
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complete its execution of Method 1 within a
certain target amount of time, the client must
obtain the service result from the server within a
certain deadline. This client’s deadline is thus set
without consideration of the speed of the server.
During the design of the client object, the
designer searches for a server object with a
guaranteed service time acceptable to it. Actually
the designer must also consider the time to be
consumed by the communication infrastructure in
judging the acceptability of the guaranteed
service time of a candidate server object.

In general, the following relationship must be
maintained:

Time consumed by communication infrastructure
+  Guaranteed time
transmission times

service < Maximum
imposed on communication
+QGuaranteed

Deadline for result arrival- Call initiation instant

infrastructure service time <

where both the deadline imposed by the client
for result arrival and the initiation instant of the
client’s remote service call are expressed in
terms of absolute real time, e.g., 10am.

There are three sources from which a fault
may arise to cause a client’s deadline to be
violated. They are (sl) the client object’'s
resources which are basically node facility, (s2)
the communication infrastructure, and (s3) the
server object’s resources which include not only
node facility but also the object code. The server
is responsible to finish a service within the
guaranteed service time, while the client is
responsible for checking if the result comes back
within the client’s deadline.

Therefore, the client object is responsible for
checking the result of the actions by all the
resource involved, whereas the server object is
responsible for checking the result of the actions
of (s3) only.
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Ii. An overview of the TMO scheme

The TMO programming scheme is a general
style component programming scheme and supports
design of all types of components including
distributable hard-RT object and distributable
non-RT objects within one general structure.
TMOs are devised to contain only high-level
intuitive and yet precise expressions of timing
requirements. No specification of timing in terms
than
deadlines for program units and time-windows
for output actions is required[4,6,7,3].

The TMO scheme is aimed for enabling a
great

other start-windows and completion

reduction of the designer's effort in

guaranteeing timely service capabilities of
distributed computing application systems. It has
been formulated from the beginning with the
objective of enabling design time guaranteeing of
timely actions. The TMO incorporates several
rules for execution of its components that make
the analysis of the worst case time behavior of
TMOs to be systematic and relatively easy while
not reducing the programming power in any way.
The basic structure of the TMO model

consists of four parts as follows[6]:

TMO= <(ODS-sec, EAC-sec, SpM-sec,
SvM-sec)
Where
ODS-sec = object-data-store section: list of
object-data-store segments (ODSS's);
EAC-sec = environment access-capability

TMO-name.
programmable communication channels, and /O

section:  list  of SvM-names
devices;

SpM-sec = spontaneous-method section: list of
spontaneous-methods;

SvM-sec =
service-methods.

Service-method section: list of

The TMO model is a syntactically minor and

semantically powerful extension of the
Significant extensions

are summarized below and the second and third

conventional object model.
are the most unique extensions.

(a) Distributed computing component

The TMO is a distributed computing
component and thus TMOs distributed over
multiple modes may interact via remote method
calls. To maximize the concurrency in execution
of client methods in one node and server
methods in the same node or different nodes,
client methods are allowed to make non-blocking

types of service requests to server methods.

(b) Clear separation between two types of methods

The TMO may contain two types of methods,
time-triggered(TT-) (also called the
spontaneous methods or SpMs) which are clearly
separated form the  conventional
methods(SvMs). The SpM
triggered upon reaching of the RT clock at

methods

service
executions  are

specific values determined at the design time
whereas the SvM executions are triggered by
service request messages from clients. Moreover,
actions to be taken at real times which can be
determined at the design time can appear only in
SpM's.

(c) Basic concurrency constraint(BCC)

This rule prevents potential conflicts between
SpM’'s and SvM’s and reduces the designers
efforts in guaranteeing timely service capabilities
of TMO's.
triggered by a message form an external client is
allowed only when potentially conflicting SpM
executions are not in place. An SvM is allowed
to execute only if no SpM that accesses the
same object data store segments(ODSS’s) to be
accessed by this SvM has an

Basically, activation of an SvM

execution
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time-window that will overlap with the execution
time-window of this SvM.

(d) Guaranteed completion time and deadline

As in other RT object models, the TMO
incorporates deadlines and it does so in the most
general form. Basically, for output actions and
completion of a method of a TMO, the designer
guarantees and advertises execution time-window
bounded by start times and completion times.
SpM’s must be fully
specified as constants during the design time.

Triggering times for

Those RT constants appears in the first clause
of an SpM specification called the autonomous
activation condition(AAC) section. An example of
an AACis for t = from 10am to 10:50am every
30 min start-during (t, t+5 min) finished-by t+10
min.
AAC section of an SpM contain only candidate

A provision is also made for making the

triggering times, not actual triggering times, so
that a subset of the candidate triggering times
indicated in the AAC section may be dynamically
chosen for actual triggering.

Such a dynamic selection occurs when an
SvM or SpM within the same TMO requests
future executions of a specific SpM. TMO’s
interact via calls by client objects for service
methods in server objects. The caller maybe an
SpM or an SvM in the client object. The
designer of each TMO provides a guarantee of
timely service capabilities of the object.

He/she does so by indicating the guaranteed
execution time-window for every output produced
by each SvM as well as by each SpM executed
on requests from the SvM and the guaranteed
completion time for the SvM in the specification
of the SvM. Such specification of each SvM is
advertised to the designers of potential clients
objects. Before determining the time-window
the server object designer must
convince himself/herself that with the object

specification,
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plus  operating
the server object can be

execution engine (hardware

system) available,
implemented to always execute the SvM such
that the output action is performed within the
time-window. The BCC contributes to major
reduction of these burdens imposed on the
designer. Models and prototype implementations
of the effective operating system(OS) support and
the friendly application programmer interface(APID
have been developed.

The TMO model is effective not only in the
of RT

control systems under design but also in the

multiple-level abstraction (computer)
accurate representation and simulation of the
In fact,

uniform structuring of control computer systems

application environments. it enables
and application environment simulators and this
presents considerable potential benefits to the
system engineers.

IV. RT object structuring tool and the TMO
approach

In this section, major desirable capabilities of a
full-featured RT
discussed along with the approaches adopted in
the TMO scheme to realize such capabilities.

object structuring tool are

This discussion, together with the overview
given in Sec. 3, reveals almost all the important
features of the TMO scheme.

Clear specification of timing constraints is a
fundamental requirement in rigorous engineering
of RT computer systems. Major issues in this
area are:

(1) Global time base;

(2) Time-triggered (TT) action; and

(3) Separation of the absolute time domain
from the relative time domain.

4.1. Global time base
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In any practical RT system design or programming

language, the following features must be
included:

(1) Specification of time bases: This includes
specifying  UTC (Universal Time Coordinated),
SST
system started), etc.

(2) Global-time reference function: This includes

which returns the current time obtained

(the time elapsed since the distributed

now
from the global time base, forever which is a
time constant representing a practically infinite
time interval, etc.

Naturally, the TMO scheme provides these

facilities.

4.2. Time-triggered (TT) action
Specification of TT
fundamental feature of RT programming that

computations is a
distinguishes RT programming from non-RT
programming. The computation unit can be any
one of the following:

(1) Simple statement such as an assignment
statement  with the right-side
restricted to an arithmetic logical expression type

expression

involving neither a control flow expression nor a
function call, an I/O command statement, etc.;

(2) Compound statement such as if-then-else
statement, while-do statement, case statement,
etc.;

(3) (Statement) Block;

(4) Function and Procedure;

(5) Object method.

TT actions associated with a computation unit
may include TT initiation of the computation
unit, timely completion of the computation unit,
and periodic execution. Therefore, in any practical
RT system design or programming language, it
is desirable to have the following type of a
construct:

ab timing specification begin

for <time-var> = from <activation-time>
to <deactivation-time>
[every <period>]

start-during
(<earliest-start-time>,
<latest-start-time>)

finish-by <deadline>

ae timing specification end

For example, consider the following case.

for t = from 10am to 10:50am every 30 min
start-during (t, t+5min) finish-by t+10 min

This specifies: The associated computation unit
must be executed every 30 minutes starting at
10am until 10:50am and each execution must
start at any time within the Dminute interval (t,
t+bmin) and must be completed by t+10min.

So, it has the same effect as

{ start-during (10am, 10:05am) finish-by
10:10am,

start-during  (10:30am, 10:35am) finish-by
10:40am }.

Of the five types of computation nits

mentioned above, the object method is the most
initiations and
The TMO execution
engines built so far fully allow the specifications
of TT
periodic executions to be associated with object
methods but only to a limited extent TT
executions of segments of object methods. In
other words, object methods, SpM’'s and SvM’'s,
are about the only basic schedulable computation
This does not
limit the programming power and
flexibility offered to RT programmers and yet

frequently used unit for TT
completion time checks.

initiations, completion deadlines, and

units fully supported so far.
seriously
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greatly simplifies the job of constructing reliable
efficient execution engines. However, there is no
intrinsic lirnitation of the TMO structure that
prevents the incorporation of TT initiation into
other computation units. Such an extension just
requires construction of TMO execution engines
capable of accurately scheduling finer-grain RT
computation units.

To support TT executions of method segments
in a limited form, an SpM may contain

do S
do S

at global-time-constant and

after global-time-constant
statements, where global-time-constant must
be an RT instance preceding the completion
deadline of the SpM. Such statements can be
executed by the
incorporating any new major OS

execution engine without
(scheduler)
parameters. A simple OS service such as  yield
the current time-slice of mine to another thread
if global-time more than one
time-slice away from now, can be easily

implemented and support the statements well.

constant is

4.3. Separation of the absolute time domain fro
the relative time domain

From the viewpoint of obtaining easily
understandable and analyzable RT programs, it is
also good to clearly separate the specification of
the computation dealing with the absolute time
domain, i.e., the computation dependent of the
time-of-day information available from the global
from the specification of the
dealing with the
domain only. In the case of the TMO structuring
SvM's deal
domain only, ie, they use only the elapsed

intervals since the method was started by an

time base,

computation relative  time

scheme, with the relative time

invocation message from an object client. This is
natural since the arrival time of a service request
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(i.e., a message invoking a service method) from
an object client cannot be predicted by the
designer of the service method in general,
especially when that designer is not the designer
of the client object. Therefore, with one exception
to be discussed below, any use of the time-
of-day information can be used within SpM's

only. This means that computations of the type

at global-time-constant do S or
after  global-time-constant do S

can appear only in SpM's.

The only that an
arithmetic logical expression consisting of now

exception allowed is
and global time constants may be used in a
server method for the purpose of selecting

candidate triggering times associated with SpM's.

V. Simulation with the TMO structuring

The attractive basic design style facilitated by
the TMO structuring is to produce a network of
TMO'’s meeting the application requirements in a
top~down multi-step fashion. For each environment
object represented by a state descriptor in the
Theater TMO, there is a spontaneous method
(SpM) for nperiodically updating the state
descriptor. SpM'’s in the
Theater TMO are activated continuously and

Conceptually the

each of their executions is completed instantly.
The SpM's can then represent continuous state
changes that occur naturally in the environment
that
among the environment objects can also be

objects. The natural parallelism exists
precisely represented by use of multiple SpM's
which may be activated simultaneously.

The service methods (SvM's) in the Theater
TMO are provided as an interface for the clients

outside the Theater. The only conceivable clients
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here are the enemy which send RVs into the
Theater to enter the Theater. Entry of an RV
into the Theater is represented by and enemys
call for the SvM Accept RV. Both the enemy
and the external forces are represented by a
TMO called the Alien TMO.

Theater
Access Capability {to other TMO's) None
Object Data Store

Theater Space {=Sky+Land+Sea Space)
Detense Target in Land {(=Command Post)

[ Radar in Land ]

[ Interceptor Launcher in Land ]

[ Fighter Airplanes (with Interceptor Launchers) |
(0 - n} RV's

[ (0 - k) interceptors ]

SpM "Update the state descriptors in ODS"
Update the state of Defense Target in Land

[ Update the state of Radar in Land |

[ Update the state of interceptor Launcher in Land ]
1 Update the state o Fighter Airplanes ]

Updats the state of RV's

[ Update the state of Interceptor's |

SvM
Accept RV (invoked by Atien RTO)

Fig. 2. High-level specification of the Theater TMQO

So far, the Theater TMO in Fig. 2 has been
interpreted as a description of the
application However, if the
activation frequency of each SpM is chosen such
that it can be supported by an object execution
engine, then the resulting Theater TMO becomes
model. The
application environment is represented by this
simulation model somewhat less accurately than

mere
environment.

a simulation behavior of the

by the earlier description model based on

continuous activation of SpM’s. In general, the
accuracy of a TMO structured simulation is a
function of the chosen activation frequencies of
SpM’s. Upon receiving the customers order, the
system engineer will first decide on the set of
sensors and actuators to be deployed in the
Theater. After the set of sensors and actuators
is determined, the Theater TMO in Fig. 2 is
expanded to incorporate all
enclosed by square brackets.
contains the selected sensors

the components
The ODS now

(e.g., Radar in

Land) and actuators (i.e., Interceptor Launcher in
Land with Interceptors). The radar and another
interceptor launcher on the fighter airplane are
not shown in the ODS of the Theater TMO but
these environment objects are described in the
corresponding parts of the state descriptors for
the command ship and the fighter airplane,
respectively.

The Theater space component in the ODS of
the Theater TMO not only provides geographical
information about the Theater but also maintains
the position information of every moving object
in the Theater. This
determine the occurrences of collisions among

information is used to
objects and to recognize the departure of any
object from the Theater space to the outside.

As the system engineer refines the single
TMO representation of the Theater, a component
in the ODS of the Theater TMO may be taken
out of the Theater TMO to form a new TMO.
such separation of the command post from the
Theater TMO. Therefore, the Command Post
TMO and the Command Ship TMO are born.
When the new TMO’s are created, the SvM'’s
that serve as front-end interfaces of those new
TMO’s and the call links from the earlier born
TMO’s to the new TMO's should also be
created. As a result, the Theater TMO becomes
a network of three TMO's.

The new TMO's
simulate the command post and the command
ship more accurately than the Theater TMO in
Fig. 2 did.

Now Theater is a network of three objects.

two may describe or

The system engineering team is now ready to

give the computer engineering team the
specification structured in the form of three
TMOs, plus an overall specification of the type.
Embed one control computer system in the
Reporter such that the computer system follows

the chosen control theory logic to control the

869
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Radar Data Queue

Access Capability (to other TMOSs)

Flying Airplane Tracking Information (Receive_new_info_from_Radar_Data_Queue)

Object Data Store

Spot_Check_Predicted : MVD : y msec : list of {object_ID, predicted_position, predicted_time}

/
Scan_Search_Result : MVD : x msec : list of {current_position, current_time}
spot_Check_Result : MVD : z msec : list of {current_position, current_time, predicted_time}

SpM

- If there are ones that match,

current_position and current_time of the abjects.

SpM1 Send_New_Data_To_Fiying_Airplane_Tracking_Information
- For each spot-check result in Data Set [Spot_Check_Result], match with predicted spot checks in
Data set [Spot_Check_Predicted] by comparing the values of predicted_time.

- Construct 38 message containing the object_ID from Data Set {Spot_Check_Predicted] and the
current_position and current_time from Data Set [Spot_Check_Result]
- Send the message to Flying_Airplane Tracking_Information (via SvM request).
- For each scan search results in Data Set [Scan_search_Result], construct a message containing

- Send the message to Flying_Airplane_Tracking_Information (via SvM request).
AAC : for T = from TMO_START + WARMUP_DELAY_SECS to TMO_START + SYSTEM_LIFE_HOURS
every PERIOD start-during (T, T + START_WINDOW) finish-by T + DEADLINE
InputSpec : Scan_Search_Result, -+ in the object data store
OutputSpec : <deadline : xxx msec>Send list of (object_ID, position, time) to .

SvM

Receive_From_Radar_on_tand (pos_list)

InitiationCond : Other SvM1 invocations are not in place.

SvM1 <Accept-via-Service_Request_channel-with-Delay_Bound-of ACCEPTANCE_DEADLINE
under MAX_REQUEST_RATE finish-within EXECUTION_TIME_LIMIT>

- Update Data Set {Scan_search_Result] or [Spot_check_Result] according to the value of detection_type.
InputSpec : pos_list = array of (return_type (=scan_search/spot_check), position, time, predicted_time)

QutputSpec : <deadline : yyy msec> Deposit the radar data received- -+
SvM2 <Accept-via---->Receive_From_Flying_Airplane_Tracking_information (spot_list)

Figure3. Detailed design specification for Radar TMO.

chosen sensors such as radars.

To outline the detailed design,
consider only the Reporter control
system. To design this system, the computer
engineering team initially produces a single TMO

we will
computer

with an object data store comprising two major
data structures:

B Radar Data Queue(RDQ), which contains
radar data received; and

0l Flying Airplane Group Container Tracking
(FAGCT) information, which contains information
needed for tracking flying airplane objects.

870

Some of the radar data coming into RDQ
TMO happens as a result of spot-check requests
generated by FAGCT TMO. To determine where
to send the data, RDQ often references recent
spot-check requests generated by FAGCT. To
support this, FAGC sends a copy of each radar
request to RDQ.

Figure 3 shows the detailed design specification
of RDQ, as would be generated by the computer
engineering team. SvMI1 receives information of
flying airplane object in the Mini~Theater from
radar and SvM2 receives copies of spot-check
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radar requests from FAGCT. SpM1 periodically
sends radar data along with the ID numbers of
the requests to FAGC.

FAGCT analyzes the radar return data and
determines if the detected flying airplane object
is dangerous. If it is not, FAGC simply tracks it
for a short time and then forgets about it. Major
FAGCT computations are handled by spontaneous
methods, whereas service methods are designed
mainly to receive information and deposit it into
appropriate object data store segments.

In the real time simulation techniques based on
TMO object modeling, we have observed several
advantages to the TMO structuring scheme.
TMO object modeling has a strong traceability
between requirement specification and design,
cost-effective high—coverage validation, autonomous

subsystems, easy maintenance and flexible

framework for requirement specification.

Vi. RT object structuring tool and the TMO
approach

Deadline handling is a fundamental part of
real-time computing. This paper has proposed a
general applicable  framework  for
systematic deadline handling in RT distributed

objects. A prototype implementation of the basic

broadly

middleware support for the proposed deadline
handling scheme has been completed recently.
However, the cases where advanced RT fault
tolerance techniques such as those for active
replication of TMO method executions are used,
have not yet been dealt with and remain a
subject for future study. Systematic deadline
area where mtuch more

experimental research is needed.

handling is an
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