DOI QR코드

DOI QR Code

Design Scheme of A Micro Real-Time Control System with CAN and RTOS

CAN과 RTOS를 내장한 소형 실시간 시스템 설계 기법

  • Lim, Young-Gyu (Department of IT Convergence Engineering, Kumoh National Institute of Technology) ;
  • Kim, Dong-Seoung (Department of IT Convergence Engineering, Kumoh National Institute of Technology)
  • Received : 2014.01.13
  • Accepted : 2014.05.02
  • Published : 2014.05.25

Abstract

In this paper, we propose a Micro Real-Time Control System (MRTCS) for decreasing the delay during interrupts processing and data transfer on sensor nodes. The MRTCS consists of a control, sensor nodes based on Controller Area Network (CAN) device. The control node was designed with Real Time Operating System (RTOS) on top of the small Micro Control Unit (sMCU). Sensor nodes have the CAN device without sMCU, which have multiple Digital Inputs, Outputs (DI/DO) and the CAN controller. We have evaluated with OCTAVE v3.6.4 from open source for system performance. Simulation results show that the system performance was increased through the delay reducing for interrupt processing and internal data transfer. We verify that a proposed MRTCS approach will be adapted to various real-time control system.

본 논문은 초소형 센서노드(이하 노드)에서 인터럽트 처리와 데이터 전송에 대한 지연에 대한 문제들을 해결하기 위해 Micro Real-Time Control System (MRTCS)을 제안한다. MRTCS은 제어노드와 Controller Area Network (CAN) 기반의 노드로 구성되어졌다. 제어노드는 소형 마이크로 제어기 (sMCU)에 Real-Time Operating System (RTOS)를 내장하여 설계하였다. 노드들은 sMCU 없는 CAN 기반의 디바이스이며, 다중 디지털 입출력과 CAN 제어기를 가지고 있다. 소형 실시간 시스템 설계를 위해, 오픈소스인 OCTAVE v3.6.4를 이용하여 시스템 성능에 대한 모의실험을 실시하였다. 모의실험을 통해 제안된 설계 기법을 이용할 경우 인터럽트 처리와 데이터 전송에 대한 지연이 감소하여 시스템 성능이 증가함을 알 수 있었다. MRTCS이 다양한 실시간 제어 시스템에 적용 가능함을 검증하였다.

Keywords

References

  1. YoungGyu-Lim, DongSung-Kim, "Design of Load Balanced DCS for Large Scaled Ship," Proceedings of the Institute of Electronics Engineers of Korea Conference, pp. 1672-1675, 2012.
  2. Jiyong Park, Seongsoo Hong, "HEART: A Highly Customizable Real-Time Operating System for Diverse Embedded Systems," Proceedings of the Institute of Electronics Engineers of Korea, pp. 323-324, 2006.
  3. Moonvin Song, Yunmo Chung, "A Study on the Hardware Architecture for Silicon RTOS," J. IEEK-Semiconductor and Devices, vol.43, no. 11, pp.19-25, 2006.
  4. M. Abdelsalam Hassan, Keishi Saknushi, Yoshinori Takeuchi and Masaharu Imai, "A System ITRON Profile for RTOS Centric Co-Simulation; Performance Modeling in SystemC," 대한전자공학회 논문지, vol. 1, pp. 181-182, 2005.
  5. Jae-Hyung Lee, Dong-Sung Kim, "Design and Implementation of Distributed Control System based on Dual Field-bus for Ship Engine," J.IEEK-System and Conteol, vol.49, no.2, pp.1-9, 2012.
  6. Seung-Jun Lee, et.al., "Design and Implementation of Shipboard Monitering System", Proceedings of the Korea Multimedia Society Conference, pp.59-63, 2008.
  7. C. U. Lee, et. al., "Development of embedded vessel monitoring system using NMEA 2000,"J. KSME, vol. 33, no. 5, pp. 746-755, 2009.
  8. Hyun Lee, et.al., "Marine Engine State Monitoring System using DPQ in CAN Network," J.ICROS, vol. 18, Issue 1, pp. 13-20, 2012. https://doi.org/10.5302/J.ICROS.2012.18.1.013
  9. Lee, Sang-Jae, Park, Gyei-Kark, Kim, Do-Yeon, "Study on applying Quad-Tree & R-Tree for building the analysis system using massive ship position data," J.KIIS, vol. 21, Issue 6, pp.698-704, 2011. https://doi.org/10.5391/JKIIS.2011.21.6.698
  10. Presi, T. P., "Design and development Of PIC microcontroller based vehicle monitoring system using Controller Area Network (CAN) protocol," IEEE International Conference on Information Communication and Embedded Systems, pp. 1070-1076, 2013.
  11. Mubeen, S., et al., "Response-time analysis of mixed messages in controller area network with priority-and FIFO-queued nodes," IEEE International Workshop on Factory Communication Systems, pp. 23-32, 2012.
  12. Zhao Yu-zhuang, et al., "Design of Real-Time and Multi-task Control System for Semi-active Suspension Based on PICOS18," IEEE International Conference on Embedded Software and Systems, pp. 565-571, May. 2009.
  13. Braescu F.C., Ferariu L., Lazar C., "OSEK-based multiple controllers with schedule feasibility self-testing," IEEE International Symposium on Power Electronics Electrical Drives Automation and Motion, pp. 1237-1242, Jun. 2010.
  14. Huseinbegovic, S., Kreso, S., Tanovic, O., "Development of a Distributed elevator control system based on the microcontroller PIC 18F458," IEEE International Conference on Computational Technologies in Electrical and Electronics Engineering, pp. 858-863, Jul. 2010.
  15. Xin Qiao, Wang Z., et al., "A CAN and OSEK NM Based Siren for Automobiles," IEEE International Conference on Networking, Sensing and Control, pp. 868-873, Apr. 2007.
  16. Nisar Shahzada Khayyam, et al., "Operating System Performance Analyzer for Low-End. Embedded Systems," IEEE International Journal of Computer Science, vol. 8, no. 6, 2011.
  17. Control Area Network 2.0A/2.0B Specification, http://www.bosch-semiconductors.de, 2013.
  18. OSEK/VDX, http://www.ms-osek.org, 2013.
  19. PICOS18, http://www.pragmatec.net, 2013.
  20. PIC18F4580, PIC250xx, http://www.microchip.com, 2013.