HENZ 7Puke] 428 fulAE 2 A2d9] A

W= A 28 fulAEE Axde] AL
(Designing of Network based Tiny Ubiquitous
Networked Systems)

- + = gt
2 2 < A F Y

(Kwang-il Hwang) (Doo-seop Eom)

2 9o B =2dA £l ELOS(Embedded Lightweight Operating System)zt 3t oJHIE 7]
o] A HElF JA=E oy zzege pAY UEYA Jhike 28 AATL A2He FRE
AMNTT EEAQ AT T2ANL AT RFY AT €325 /M 234 AWY FCEFS 2AZ97t
ALHRT Bk Juy dEHQZ 7L Y8l FA doJHE ==& 53 9AF F/9(semi-auto
configuration) 48 AMS-&Th AR AZEY0] Al AA A 4¥ s=do] ZILEEYXM
FEPHAk =3, AT A8l 4%L Hrlelr] 98M, $Ele fulFELa JEYA HAE HEE
AP, Tt FAGA Y AYPo] o]Fo] Mtk AY AANE F3lo AGE ELOS A= AAT Al
kg 7 WIESA 7o &8 fuFE S ALHd 333 @2 Al2dolge RS U

719 = gt s Al2d, LA A, AL A2", fEFAEE FHFE, X EAR

Abstract In this paper, we present a network-oriented lightweight real-time system, which is
composed of an event-driven operating system called the Embedded Lightweight Operating System
(ELOS) and a generic multi hop ad hoc routing protocol suite. In the ELOS, a conditional preemptive
FCFS scheduling method with a guaranteed time slot is designed for efficient real-time processing.
For more elaborate configurations, we reinforce fault tolerance by supplementing semi-auto
configuration using wireless agent nodes. The developed hardware platform is also introduced, which
is a scalable prototype constructed using off-the-shelf components. In addition, in order to evaluate
the performance of the proposed system, we developed a ubiquitous network test-bed on which several
experiments with respect to various environments are conducted. The results show that the ELOS is
considerably favorable for tiny ubiquitous networked systems with real-time constraints.

Key words @ Embedded Systems, Operating Systems, Real-time Systems, Ubiquitous Computing

141

1.ME

Ubiquitous networks are emerging as a next

network paradigm in which infrastructure and
services are available in any format, at any time or
location. This exciting new paradigm is the result
of recent research and technological advances in
wireless and sensor networks, distributed systems,
(MEMS) and low cost

CMOS technology. Ubiquitous networks also enabled

micro-electro-mechanical

t A A AAdAARGE HFEAAATS mg
brightday @final.korea.ac.kr

o334 zedde AR e
eomds@final.korea.ac kr
=EA4 0 2006 49 7Y
AALgtg 0 2007 59 229

development of a variety of applications, from home
networks for environmental monitoring to home,
social or industrial network applications. To provide
seamless ubiquitous services, it is important that
hundreds or thousands of ubiquitous nodes colla-
borate in a distributed ad hoc manner. Such nodes
should have a scalable architecture for supporting
diverse applications.

Ubiquitous nodes, or sensor nodes, consist of
extremely limited resources, more specifically, pro-
cessing, memory, and power. In addition to such
deteriorate resources, a network-oriented ubiquitous
system has different characteristics from general
purpose networked embedded system. In ubiquitous
networks, it is very frequent that several different

142 ARAEI =82 AHE] 4A A 13 ¥ A 3 2(20076)

flows of data occur on the network, simultaneously.
These traffics are not always but intermittent since
they generate a traffic only when they sense
environmental variations or respond to query of a
user. In addition, most of ubiquitous applications
have real-time constraints. In particular, it becomes
more significant requirement under ubiquitous envi-
ronment where most nodes should be cooperatively
synchronized for autonomous multi hop communi-
cation.

To cope well with such characteristics of ubiqui-
tous networked systems, in this paper, a network-
oriented lightweight real-time system, which is
composed of an event-driven operating system
called the Embedded Lightweight Operating System
(ELOS) and a generic multi hop ad hoc routing
protocol suite.

In the following section, traditional researches
related to ubiquitous networked systems are intro-
duced. The proposed system architecture contrasted
with traditional works is presented in section 0L
Section IV introduces the developed hardware plat-
form, which is a scalable prototype constructed
using off-the-shef components. In section V, the
performance of the proposed system, which is

implemented in a ubiquitous network test-bed
constructed in our building, is evaluated from the

various viewpoints. Section VI concludes this paper.

2. Related work

Practical real-time ubiquitous applications are
successfully accomplished by a harmonious combi~
nation of various technologies, such as embedded
hardware platform, system software including ope-
rating system, and network technology based on ad
hoc sensor networks.

First, several hardware platforms, which are com-
posed using commercial off-the—shelf components,
have been developed for ubiquitous sensor networks,
as in [1-6]. The platform [1] using StrongARM
processor as an MCU has achieved high perfor-
mance processing. However, because of expensive
production cost per node, it is not desirable to be
massively deployed in a number of nodes. Instead
it is more desirable to be used for minor limited
systems in which high processing ability is required.

The other platforms [2-6] which use 8-bit micro
controller, such as an Atmega 8bit AVR RISC
processor or 8051 series, fill the requirements of
being low cost, but requires additional efforts to be
extended to diverse and flexible systems, since they
only support consistent /O components and RF
modems.

In parallel with the development of hardware
prototypes, various embedded software platforms
[7-12] have been developed. The researches usually
focus on the development of embedded operating
systems to efficiently manage the limited resources.
Operating systems [7-10] for traditional real-time
embedded systems allow some components to be
added or their

However, the size and functions of the operating

removed according to needs.

systems are still much more than what is required

for lightweight real-time ubiquitous networked
systems. In order to operate on low performance
microcontrollers, compact real-time operating sys-
tems (11,12] have been introduced. In the systems,
allocation and mainly

resource scheduling are

targeted for
communications. This feature is not suitable for the

control system applications, not
real-time ubiquitous system, in that most tasks are
tightly related to communication events. TinyOS [6]
is the most popular operating system developed on
the Berkley Mote platform for sensor networks.
The event-driven operating system adopts a LCFS
scheduling method. However, in a real-time ubiqui-
tous environment where time-critical applications
exist, since context switching by new tasks is
required frequently, multiple tasks can create data-
race conditions and eventually the service time of
time-critical tasks will not guaranteed.

In a ubiquitous network, it is necessary to
disseminate information to certain specific nodes,
such as a base station or sink node, through multi-
hop ad hoc routing technology. Several primitive ad
hoc routing algorithms [14] have been already
introduced. In addition, sensor network routing
protocols [15] perform data aggregation coupled
with data-centric routing scheme in more limited
resource environments. The Zigbee alliance are
trying to accommodate a variety of routing topo-

logies, such as cluster tree, mesh, and star, by

HEYZ 7)8ke] 238

extending low data rate WPAN [16]. To accom-
modate these various ad hoc routing protocols in
ubiquitous environments, our developed
ELOS,

routing protocols modified on the basis of tradi-

system,
supports various RF modems and several
tional routing protocols, such as flooding, tree-
based routing, and mesh supported routing protocols.

While existing researches are not completely
suitable to be integrated into a generic real-time
ubiquitous networked system due to several pro-
blems in flexibility and guaranteeing a real-time
service, the proposed ELOS system is designed to
conform well to a scalable real-time ubiquitous

system.

3. The proposed real-time system software
architecture

The ubiquitous system is different from traditional
general purpose real-time embedded systems in that
each system conducts an application specific operation.
Figure.l describes the proposed real-time software
architecture for the ubiquitous real-time networked
system. The software architecture is largely divided
into three important layers: hardware abstraction,
operating system, and application. This layered con-
cept provides convenient usage to efficiently use
each resource and provide the modularity of each
software components.

The routines to control individual hardware devices,

FHlFAE 2 A== A 143

such as manipulations of registers in the MCU, RF
modem control, sensor and actuator control, are
abstracted in hardware abstraction layer. Therefore,
some changes in hardware would not affect upper
layer software.

3.1 ELOS: Embedded Lightweight Operating

System

In order to efficiently manage the limited resources
and concurrently generated tasks, we developed an
event-driven operating system called the Embedded
Lightweight Operating System (ELOS) combined
with a generic multi hop ad hoc routing protocol.
In this subsection, some details of the presented
ELOS system are presented.

First of all, it is considered that scheduling policy
of an operating system is one of the important
parameters determining overall system performance,
since multiple tasks by various flows are processed
according to the adopted scheduling policy. There-
fore, in order to perform an efficient task sche-
duling satisfying requirements of real-time ubiquitous
scheduler,
preemptive FCFS scheduling method with a gua-

systems, a which is a conditional
ranteed time slot, is newly designed. The scheduler
is adopted in our ELOS system. In the proposed
scheduling method, tasks by general events are
processed similarly to general FCFS, but the exe-
cutions can be preempted by registered time-critical

tasks. The time-critical task is also guaranteed

Application
Layer

QRN

oo

DRI

L8

Link (MAC)

Routing Layer
4 Sub Tasks I
OIS

sm: Tasks
Packet Buffer

Temperatur Serial |{ STATUS
(ngm J(o J[Actuator } Data [LED

ESEAS

Hardware
Atbrctranti

Layer

< Event Post

—p> Call Task

Figure 1 The proposed real-time software architecture for ubiquitous networked systems

Task 1 Triggered
from Event A

AEREI=EA: AFEY 4A A 13 @ A 3 2Q076)

Task 2 Triggered
from Event B

Task 3 Triggered
from Evont C

from Event D
(Timer Event})

[
Task 4 Triggered i
L]
A

+ ¥ 7
i |
i i
/ \

<Note>
Priority : C> B>A
Event D is Timer Event to be protected from Other Events

Task 4 is periodic task triggered from Event D with 10s’ perfod

Service time of tasks (A,Band C) : 2s
Service time of Task 4 : 3s

4 A}
4 AY
Tagk 4 (Pelrodic Task) is pvoteéwdl Ve
~~~~~~ -~ from other Event for secure "~ _ -
excution during the servicetime  ~ =~~~

}  AmivalofanEvent
Running Task
Suspending Task

Figure 2 Operation of scheduling method used in ELOS

during its execution time without any interruption
in deadline. Figure 2 shows the detailed operation
of the proposed scheduling method used in the
ELOS. In section V, it is shown that the proposed
scheduling method outperforms traditional scheduling
methods, such as FCFS, LCFS, Round-Robin, and
Priority Scheduling, from the several viewpoints.
The ELOS performs event-driven task management.
This event-driven method is suitable for application
The ELOS supports two
kinds of event: sporadic event and periodic event.

specific characteristics.

The former is an event that is not real-time and
triggered from hardware or software, and the latter
is a time-critical event. Each event is classified
when they are registered. Therefore, the scheduler
can protect time-critical tasks from other sporadic
tasks.

A complete ELOS system consists of an event
manager and set of application components. Event
manager includes a scheduler, power manager, and
memory monitor. An application component is
composed of an event list, event handler, and a
bundle of related tasks. Each application component
registers the corresponding event in an event list
and declares tasks to be called by the event.

An event is used as a signal to call a correspon-
ding task
achieve high-level event management, the ELOS

in multiple data flows. In order to

list.
important role in buffering events,
ELOS efficiently performs conditional preemptive
FCEFS scheduling with guaranteed time slots by
reconfiguring the hardware and software events.
This feature in the ELOS is distinguished from

other event-driven operating

uses an event This event list plays an

whereby the

systems in which

event generations only depend on hardware inter—

rupts. This also provides more programmable,
flexible event management to application-level
program.

A task creates a method to perform various
arbitrary jobs. A task consists of one or more
functions, and most tasks are triggered from
corresponding events or other tasks. These tasks
tasks. Only

registered tasks can be scheduled and processed by

cannot preempt events or other
posting events.

The power manager performs power manage-
ment of each hardware component and MCU by
controlling the power mode. This power manager
operates with a programmable PM value similar to
a watchdog timer. The value is refreshed whenever
events are triggered and decremented during an
the

manager changes the state into idle. The idle state

idle event. When the value reaches zero,

is recovered from interrupts. However, more

detailed and aggressive power management is left



SELER NS

to the application.

The memory manager protects a memory from
several violations during execution time, since burst
traffic can make stack overflow in the code or data
memory. In addition, the memory manager manages
an internal EEPROM. The memory is used for
backup of current important contents when the
memory overflow or system faults occur..

3.2 Communications in ELOS

The communication is one of the most important
software components for a ubiquitous networked
system, since most tasks are related to communi-
cation. The communication software in ELOS, which
is based on the layered concept, in particular, is
designed for short-range multi hop ad hoc networ-
king.

In the ELOS, all hardware control codes are
abstracted into hardware abstraction layer so that
each layer can be designed and operated without
concern about the kind of RF modem. In addition,
since the ELOS provides event posting function in
software (tasks) as well as hardware interrupts, the
event can be used as an asynchronous signal to
communicate between each layer. This maximizes
the independency between each layer.

In a resource limited real-time ubiquitous system,
packet and queue handling becomes a primary
concern. The ELOS uses a packet buffer for effi-
cient packet handling and it is managed by a
queue. The use of the packet buffer has some
advantages. First, since higher layer blocks of data
are encapsulated by lower layers, it is useful to
design independent protocols for each layer. Also,
the use of a packet buffer makes it possible to
maximize memory utilization by minimizing duplicate
memory copy. The ELOS provides basically a MAC
header, Routing header, and Application layer
header. Each field in each header can be easily
modified, removed and added.

In addition, the ELOS is able to operate with
various MAC protocols, which include CSMA/CA
and TDMA. Moreover, the ELOS provides several
routing protocols modified for more efficient routing
on the basis of traditional routing protocols, a
and mesh

flooding, tree-based routing protocol,

supported routing protocol.

FuAE A N2 p 145

Event
Manager 3
Q
Manager
Packet Buff Queue

(a) Source Node

6 _LRouting Lay!
Sub Tasks
-—?

Event
Manag; 4 ("Uink (MAC)
Layer
Sub Tasks
3
Q
Send Recsive Packet Buff Queue

(b) Intermediate Note (Router)

Routing Lay,
Sub Tasks

Event
Manager

—t>
3
RF ) E 7
Receive
Packet Buff Queue

(c) Destination Node
Figure 3 An example of event-driven packet process
for multi hop routing

Data delivery in the ELOS is achieved by Packet
buffer, Queue manager, and MAC and Routing sub
tasks on the basis of the Event manager. Figure 3
illustrates an example of event-driven communication
process for multi hop routing, in source node (a),
intermediate node (b), and destination node (c),

respectively.



146 Auasts =8 AR 24 A 138 A 3 Q076

First, source node generates data when one of

the following conditions 1is satisfied: periodic
sensing data delivery, query flooding, and detection
of over-threshold sensing event or active tag. Data
Generated is stored in packet buffer queue as a
Make_packet

manager, which monitors periodically the status in

packet structure by task. Queue

queue, posts a read_queue event if new data
occurs. The event manager schedules and executes
the RF_send task. And then the packet is sent to
FIFO of RF modem.

For the reception process, after completing error
check, RF data obtained from RF modem is stored
in the Packet buffer queue as a packet structure by
the RF Receive task. On noticing that the new
packet arrives, the queue manager posts the event.
The event manager executes MAC layer subtasks
according to the event, and then the MAC subtask
posts new event that notices that there is a packet
to be processed at the upper layer (routing). Event
manager executes Routing layer subtasks again,
and if the packet's final destination address is
matched with its own address as shown in (c) of
Fig.3, the data is obtained from packet buffer queue
by performing Get_data task. Otherwise, as shown
in (b) of Fig.3, for re-forwarding, the packet is
delivered to RF modem through the RF_send task.
In this process, asynchronous events between each

layer enhance the independency between each layer

and provide more effective usage for packet
handling.

In order to adapt to chaotic conditions such as
intermittent failure and node destruction, the ELOS
has the ability of self-organization based on the
MAC and routing protocols. However, such sites,
where well planned networks are required but
exposed by numerable interferences, require more
precise, reliable configuration methods than self-
organization. In practical distributed ad hoc network
implementation, several problems result from envi-
ronmental variations, including asymmetric link, and
communication interferences. These can bring about
great confusion to the entire network. Moreover,
these problems are hardly recovered using just
self-organization because of its fundamental limi-
tations. Therefore, in order to overcome such a
limitation of self~organization, semi-auto configuration
function is supplemented in the ELOS. This semi-
auto configuration function is performed with a
special node called a wireless configuration agent
node. The agent has the ability to diagnose the
status of neighboring problematic nodes and to
force to change the routing path and other confi-
guration information as shown in fig. 4. Therefore,
it is possible that various topologies that a user
wants are established without concern about phy-

sical deployment of nodes, guaranteeing creation of

a well planned network.

FILE TRANSMISSION
FiLE I R TRANS

™o

1”°U A U [ rvinmes - CLAR
| RSO (Debun M e ) i .
e fod T T T Wy 1O O
24 Boiotoroa - e 10 - SET
Rt Stni 1D 1y - .
Reuting tiblo i sET
f;,; Mot hop CteAs
' z‘:g(‘l 2 8] ot 3 Y T
| End ot routing teblo o
| e £
(e w——————— S - i
cror g
Toc . 1 Cantral .
Fometo e [ Hpgmet. Y
My Ponng U Sattina
TETT MODE
AAM TEUT  SERIAL TEST sSTART

PORT TEST

Uits; Senle (W nd EXTAAL

Figure 4 Semi-auto configuration process



VEST 7k 29 fuIHE 2 A" A

4. Hardware Prototype

Although the proposed ELOS system is designed
not depending on only a specific hardware platform,
in order to implement and verify the proposed
real-time ubiquitous networked system software, a
prototype, with a very compact size of a square
inch, powered from two 1.5V AA, is developed. As
shown in Fig. 5, the hardware prototype is com-
posed of four individual boards, Main board, RF
boards, I/O boards and Interface board for interface
with a PC or PDA.

The main board plays the most important role of
driving the RF board and I/O board. An ATMEL
AT89c51ED2 MCU is used as a main MCU with a
12MHz main clock. It includes 64kbytes of internal
flash memory for code, and 2048 bytes of internal
RAM. Power mode of MCU can be controlled by
software with three power mode levels: ACTIVE,
IDLE, and POWER DOWN. For efficient I/O
connection, the prototype uses address decoded I/O
mapping method. This has the advantage of being
more flexible, scalable I/O connections compared to
direct use of general purpose I/O ports.

The RF board is composed of a RF modem for
short-range wireless communication and additional
RF circuits, such as an impedance matching circuit
and antenna. First of all, it is noticeable that the

147

prototype supports four different kinds of modem:
RF102 (RFwaves), nRF2401 (Nordic), CC2400 (Chip-
con), and CC2420 (Chipcon, IEEE802.15.4 compatible).
individual RF modem, a
common interface to connect between the RF board

In order to interface
and Main board is devised. This common interface
consists of a 3-wired Serial Peripheral Interface
(SPI) and 4 general I/O ports, providing common
usage for individual RF modems to the software
developer.

To support various sensor and actuator applica-
tions, the I/O board is separated from the Main
board. The I/O board includes basically a tempe-
rature sensor, a CDS cell, ultrasonic sensors, and a
relay circuit to control external illumination or
another actual system. The board can also accom-
modate additional /O devices.

In general, most of the ubiquitous systems are
battery powered. However, some specific nodes

need to be connected to high level computing
devices, such as a PC or PDA. For such nodes, the
Interface board provides two kinds of communi-
cation interfaces, RS5-232C and USB, to communi-
cate between PC and an embedded system and
powered by an AC adaptor. The interface board is
also used as an interface to load a program or to

perform serial debugging

Decoding

Address

Figure 5 Hardware prototype in which the ELOS system is implemented



148 ARALE=EA

5. System Evaluations

In this section, the performance of the ELOS
system, which is implemented on the developed
hardware platform, is evatuated. The system is first
evaluated from the viewpoint of a system level, and
then, network level evaluation on the developed
ubiquitous network test-bed is conducted.

5.1 System level evaluation

5.1.1 Small size and low-power consumnption

FEo 44 A4 134E A 35076

two 15V batteries with 1250mAh, the lifetime of
the prototype can last for one and half years in
fully idle mode, and for a week in fully active
state. Therefore, practical lifetime can last for a
couple of months to a year according to software
power management.

5.1.2 Efficiency of Real-time Scheduler

Table 1 Power consumption in our hardware prototype

. . P
Figure 6 shows the breakdown of the code and Active Idle D(:)va
data for each the (;omponent in our complete MCU 79mA | 66mA 51A
system. It is remarkable that the code size of the Decoder Logic WHA - -

. . . d
C()mPlete ELOS, including seV(;rali\l/[ multi-hop ;a hoc A/D Con Py ~ A
routing protocols, two types o AC protoc? s, and Temperatare i -
self and semi-auto configuration software, is app- Sensor 60LA
roximately 10kbytes. When considering total prototype CCA20 Tx: 17.4mA 26uA 20pA
flash memory size of 64kbytes, our system con- Rx: 18.7mA
. . c 1
sumes just 15 percent of available memory. Note R CC2401 };i 22:2 1.2mA 15pA
that data memory requires just 560 bytes of data F :
v nRF2401 | X BmAL A 400nA
memory space. M Rx: 25mA
Table 1 shows the power consumption for each RF102 Tx: 21lmA - A
component in the hardware prototype. When using Rx: 38mA
component Code Dats
Hardware 1018 B
Initial Process a1 12|
Timers 25 ]
Resource Manager
(Scheduler) 0 2
Packet & Gueue
Management 2339 s
PHY 1609 22
MAC 1323 [ <]
Routing mi k]
Configuration 736 L
App %6 %
Total 10438 59
Data Footprint Code Footprint
w Application 12000 W Application
m Configuration = Configuration
DAoing 10000 f D Routing
BMAC
WMAC 8000
B PHY 0 BPHY
mPacket & Queve|| | £ 6000 B Packet & Queue
0 Scheduler @ O Scheduler
O Timers 4000 O Timers
W nit Process 2000 M init Process
B Hardware B Hardware
0
) 1

Figure 6 Breakdown and footprint of code and data for our completion system



HEYZ e 23 felde2 A2y A 149

As presented in previous section, scheduling
policy of an operating system is one of the most
important parameters determining overall system
performance, since multiple tasks by various flows
are processed according to the adopted scheduling
policy. Efficient real-time system should have the
ability to accommodate multiple concurrency-
intensive data flows and to process real time tasks
limited
resources. In section [, we have already introduced

as well as efficient management of
preemptive FCFS scheduling with

which is adopted in the

a conditional
guaranteed time slots,
ELOS.

There are several traditional scheduling methods,
such as, first-come-first-served (FCFS), last-come-
first-served (LCFS), round-robin known as time-
slicing, and priority queuing. The performance of
these scheduling policies can be different according
to the application environments in which they are
used. We have examined the following three
metrics for real-time scheduler: the first is the
normalized turnaround time, which represents rela-
tive delay experienced in the system by a task.
The second is the maximum queue length, which
shows how much memory is required for sche-
duling tasks. The final measurement is the guaran-
teed rates of time-critical tasks, which represent
how many time-critical tasks is completed without
any interruption. All schedulers are tested on the
developed prototype. It is assumed that the size of
all tasks is very small, and the system generates a
burst of concurrency-intensive events, with one
time-critical task.

Figure 7 presents the results of observation of
each experiment. Note that FCFS and round-robin
scheduling methods outperform other scheduling
methods from the point of the normalized turn-
around time and maximum queue length, respec-
tively. It is also shown that priority scheduling is
superior to others in terms of guaranteeing tasks.
However, round-robin scheduling is less recommended
for real-time ubiquitous systems, because of inter-
mittent application traffic characteristics in long run
behavior. In addition, LCFS scheduling can bring
about the potential data-race problem due to not
mutual exclusive updates to shared memory. Besides,

Comparison of Yarious Scheduling
Methods

Norm atized Turn-around Time

FCFS RR LCFS

Priority  ELOS

(a) Comparison of Normalized Turnaround Time

Comparison of Maximum Queue Length

Length(Bytes)
8

~N
o

FCFS AR LCFS  Prierity ELOS

(b) Comparison of Maximum Queue Length

Comparison of Guarateed Rates of Time-critical
Task

© az

Priority ELOS

FCFS RR LCFS

(¢) Comparison of Guaranteed timecritical tasks
Figure 7 Comparison of performance and guaranteed
task of the several scheduling methods

frequent context-switching in small tasks increases
the redundant switching overhead. Note that the
proposed scheduling method, which is wused in
ELOS, shows better performance than others from
the several viewpoints as shown in Fig. 7.

In addition to real-time scheduling ability, as

shown in Fig. 6, the ELOS executes the resource



250 AEAHIY=EA

manager with a code size of just 270 bytes and
data memory size of just 22 bytes, including the
scheduler, power manager, and memory monitor.

5.2 Network level evaluation

To implement and verify the proposed system, a
ubiquitous network test-bed is developed in our
building. As shown in Fig. 8, the test-bed consists
of 10 embedded nodes, which are deployed on the
corridor, and 11 nodes, which are in the service
room connected with the corridor, including 4 illu-
mination sensor nodes, 4 temperafure sensor nodes,
2 actuator nodes(one is to control illumination and
another is for an air cooling system), and one sink
node. Also, for user identification, a user's PDA is
equipped with an active tag, which is an embedded
rode periodically broadcasting its ID. As shown in
fig. 8, the nodes in the service room form a star
topology and the nodes on the corridor construct a
multi hop ad hoc network. A sink node is
connected to the embedded gateway [13] to monitor

U

Access Point

FH9 A4 A 132 A 3 TE076)

and control the network though the Intermet. The
Internet is also used to provide the organizational
map through local WLAN.
52.1 Real-time processing ability with respect to
various traffics
The final
reliably perform distributed data aggregation to sink

goal of ubiquitous networks is to
nodes. We first examined the successful aggre-
gation rate of data acquired from multi-hop nodes
in the test-bed. As shown in Fig. 9(a), it is noti-
ceable that our system performs reliably data
aggregation through the multi hop ad hoc networ-
king, maintaining greater than 90% success rates.
In order to evaluate the real-time processing
ability, complete response rates in various traffics
are observed. First, each node responds to the sink
the PDA user
(equipped with active tag) moves toward the sink

node periodically. At that time,

node, whereby static nodes on the corridor or
service room come to identify the active tag. Nodes

5 B B B B B
R 4 . |

Ilmﬁ

Service
Room __—]

Sansor Nodo with
Light Sensor
Sensor Node with
Temperature Sensor

Sensor Node
to control Actuator

N

Ethemet

Sensor Gateway

Figure 8 Real-time ubiquitous network test-bed environment



YESI 7] 43 FUFH2 A2"e A 131

100 ~ o—-—-\-\
”“-.'-—....——IN

90+ )
L]
¥
«
§ ]

70+
g —a— ELOS
S- 60 -
x
R

w 1 1) M L4 v

0 2 3 6 8 10

Hop counts

(a)

0] e——,—,

10 -2 D5 with ELOS
~u—15swith ELOS
04 - 1.0swith ELOS
20 —w—DSswith ELQOS

Complete Regponss Rates
8 8
Il L

10 - 1.0s with LCF S Schaduler
0 v ¥ T T T
o 2 4 € 8 10
Hop Counts
(b)

Figure 9 Multi hop data success rate and complete
response rates

which sense the active tag send its location
information to sink node, immediately. Eventually,
this experiment constructs two different communi-
cation events concurrently: the first is a periodic
event and the second is a sporadic event from the
movement of the active tag. Under this situation,
the ELOS and LCFS, which is adopted in TinyQOS,
are tested, respectively. In the simulation, the query
period was varied from 0,5s to 2.0sec. As shown in
Fig. 9(b), it is presented that the ELOS is superior
to LCFS scheduling in terms of complete response
rate with respect to varying traffic. It can be said
that real-time processing ability of the ELOS pre-
sents considerably reliable performance in diverse
traffic environments where the real-time tasks
coexist with non-time critical tasks.

6. Conclusion and Future Work

We presented a network—oriented lightweight

real-time system, which is composed of an event-
Embedded
Lightweight Operating System (ELOS) and a generic

driven operating system called the
multi hop ad hoc routing protocol suite. In the
ELOS, a conditional preemptive FCFS scheduling
method with a guaranteed time slot is designed for
efficient real-time processing. For more elaborate
configurations, we reinforce fault tolerance by supple-
menting semi-auto configuration using wireless
agent nodes. The developed hardware platform is
also introduced, which is a scalable prototype con-
structed using off-the-shelf components. In addition,
in order to evaluate the performance of the pro-
posed system, we developed a ubiquitous network
test~bed on which several experiments with respect
to various environments are conducted. The resuits
proved that the ELOS is considerably favorable for
tiny ubiquitous networked systems with real-time
constraints.

In the future, for more complete large-scale
real~time ubiquitous networks, it is important that
the ubiquitous networked nodes should be scaled
down to a microscopic size, utilizing advances in
MEMS and CMOS logic technologies. In addition,
employing a renewable energy source such as solar
energy will solve the energy problem. In addition,
real~time system software is expected to be cap-
able of more autonomous, powerful self-testing,

self-healing, and self-updating.

References

[1] G. Asada, T. Dong, F. Lin, G. Pottie, W. Kaiser,
and H. Marcy, "Wireless integrated network
sensors: Low power systems on a chip,” in
European Solid State Circuits Conference. October
1998.

[2] J. Rabaey, ]. Ammer, T. Karalar, S. Li, B. Otis,
M. Sheets, T. Tuan, "PicoRadios for Wireless
Sensor Networks: The Next Challenge in Ultra-
Low-Power Design,” Proceedings of the Interna-
tional Solid-State Circuits Corference, San Francisco,
CA, February 3-7, 2002.

[31 Rex Min, Manish Bhardwaj, Seong~Hwan Cho,
Amit Sinha, Eugene Shih, Alice Wang, and
Anantha Chandrakasan, "Low-Power Wireless
Sensor Networks,” VLSI Design 2001, January
2001.

[4] Sung Park, Ivo Locher, Mani Srivastava, "Design
of a Wearable Sensor Badge for Smart Kinder-



152 ARG =F2) AR 4A A 13 A Al 3 3(0076)

garten,” 6th International Symposium on Wearable
Computers (ISW(C2002), Seattle, WA, October 7-10,
2002.

[5] A. Savvides and M. B. Srivastava, "A Distributed
Computation Platform for Wireless Embedded
Sensing,” in the Proceedings of International Con-
ference on Computer Design 2002, Freiburg,
Germany. 2002.

[6] Jason Hill, Robert Szewczyk, Alec Woo, Seth
Hollar, David Culler, Kristofer Pister, "System
Architecture Directions for Networked Sensors,”
ASPLOS 2000, 2000.

[7]1 PalmOS Software 3.5 Overview.
http://www.palm.com/devzone/docs/palmos35.html.

[8] pSOSystem Datasheet.
http://www.windriver.com/products/html/psosystem_ds html.

[9]1 VxWorks 5.4 Datasheet.
http://www.windriver.com/products/html/vxwks54_ds.html.

[10] Microsoft Corp. Microsoft Windows CE.
http://www.microsoft.com/windowsce/embedded/

[11] M. Chiodo. Synthesis of software programs for
embedded control applications, 1995.

[12] Barry Kauler. CREEM Concurrent
Embedded Executive for Microcontrollers.
http://www.goofee.com/creem htm.

[13] Kwang-il Hwang, Jeongsik In, Nokyoung Park,
and Doo-seop Eom, ”"A Design and Implemen-
tation of Wireless Sensor Gateway for Efficient
Querying and Managing through World Wide
Web,” IEEE Transactions on Consumer Electronics,
vol. 49, Nov. 2003, pp. 1090-1097.

[14] Perkins, Ad Hoc Networking, Addison Wesley, 2001.

[15] Ian F. Akylidiz, Weilian Su, Yogesh Sankarasub-
ramaniam, and Erdal Cayirci, "Survey on Sensor
Networks,” IEEE Communication Magazine, 2002.

[16] IEEE P802.15.4/D18, Draft Standard: Low Rate
Wireless Personal Area Networks, Feb.2004.

Real-time

EEE!

2002 Equign ARA7|HHFER
B 51} 20049 TEOE R AAFEFE I
I AAL 2007d mEdistw AxPHEFE
Fetat gAL @A AEJARREUE A
B Fedlols HYBAL BAFR= AD
HOC networks, RFID systems, Sensor
networks, Ubiquitous networks

a5 4

1987 nulgtm Ax-F e £9. 1989
| meidstz ARFE AL 19993
dE AT FRAFH ST 9r}
19961 ~19991 ETRI A9 47Y. 1999
W~2000d A3digm AYZAL A

agn HAFER Fug F4Eoke AD HOC
networks, RFID systems, Sensor networks, Ubiquitous
networks, Internet QoS



