Bankruptcy prediction model is an issue that has consistently interested in various fields. Recently, as technology for dealing with unstructured data has been developed, researches applied to business model prediction through text mining have been activated, and studies using this method are also increasing in bankruptcy prediction. Especially, it is actively trying to improve bankruptcy prediction by analyzing news data dealing with the external environment of the corporation. However, there has been a lack of study on which news is effective in bankruptcy prediction in real-time mass-produced news. The purpose of this study was to evaluate the high impact news on bankruptcy prediction. Therefore, we classify news according to type, collection period, and analyzed the impact on bankruptcy prediction based on sentiment analysis. As a result, artificial neural network was most effective among the algorithms used, and commentary news type was most effective in bankruptcy prediction. Column and straight type news were also significant, but photo type news was not significant. In the news by collection period, news for 4 months before the bankruptcy was most effective in bankruptcy prediction. In this study, we propose a news classification methods for sentiment analysis that is effective for bankruptcy prediction model.
The purpose of this research is to realize interactive art based on user's motions information using real time internet search terms. For this purpose, real-time search terms and related news information were extracted from three domestic and foreign portal sites, and the extracted information was used to generate content for interaction with the user. For interaction between the generated content and the user, a motion-based interactive technology that optimizes the intentions and experiences of the user was developed. A motion-based interactive system can be used to develop an immersive interface that induces user interest.
누구나 뉴스와 주가 사이에는 밀접한 관계를 있을 것이라 생각한다. 그래서 뉴스를 통해 투자기회를 찾고, 투자이익을 얻을 수 있을 것으로 기대한다. 그렇지만 너무나 많은 뉴스들이 실시간으로 생성 전파되며, 정작 어떤 뉴스가 중요한지, 뉴스가 주가에 미치는 영향은 얼마나 되는지를 알아내기는 쉽지 않다. 본 연구는 이러한 뉴스들을 수집 분석하여 주가와 어떠한 관련이 있는지 분석하였다. 뉴스는 그 속성상 특정한 양식을 갖지 않는 비정형 텍스트로 구성되어있다. 이러한 뉴스 컨텐츠를 분석하기 위해 오피니언 마이닝이라는 빅데이터 감성분석 기법을 적용하였고, 이를 통해 주가지수의 등락을 예측하는 지능형 투자의사결정 모형을 제시하였다. 그리고, 모형의 유효성을 검증하기 위하여 마이닝 결과와 주가지수 등락 간의 관계를 통계 분석하였다. 그 결과 뉴스 컨텐츠의 감성분석 결과값과 주가지수 등락과는 유의한 관계를 가지고 있었으며, 좀 더 세부적으로는 주식시장 개장 전 뉴스들과 주가지수의 등락과의 관계 또한 통계적으로 유의하여, 뉴스의 감성분석 결과를 이용해 주가지수의 변동성 예측이 가능할 것으로 판단되었다. 이렇게 도출된 투자의사결정 모형은 여러 유형의 뉴스 중에서 시황 전망 해외 뉴스가 주가지수 변동을 가장 잘 예측하는 것으로 나타났고 로지스틱 회귀분석결과 분류정확도는 주가하락 시 70.0%, 주가상승 시 78.8%이며 전체평균은 74.6%로 나타났다.
본 연구는 빅데이터 분석 방법인 오피니언 마이닝을 사용하여 아파트 가격 관련 뉴스 기사의 극성을 확인하는 연구로 자료는 2012년, 2018년 2년간 네이버에 게시된 인터넷 뉴스 기사를 사용하였다. 감성분석 모형을 모델링하고 주제 지향형 감성사전 구축 방법을 제안하였다. 제안한 감성분석 모형을 통해 분석한 결과, 아파트 가격이 상승하는 시기에는 사회적 이슈 선정에 있어서 언론사의 성향에 따라 차이가 있는 것을 확인하였고 정부와 동일한 성향의 언론사에서 긍정 기사가 많은 것을 확인하였다. 부동산 분야에서 사용할 수 있는 감성분석 모형을 제시하고 부동산 관련 비정형 데이터의 극성을 분석하였다는 것에 의의가 있다. 향후 다양한 분야에 접목하기 위해서는 주제별 감성사전을 구축해야 하며 다양한 비정형 데이터를 수집하고 수집 기간을 확장하는 것이 필요하다.
In this parer, we propose LM adaptation for broadcast news recognition. We collect information of recent articles from the internet on real time, make a recent small size LM, and then interpolate recent LM with a existing LM composed of existing large broadcast news corpus. We performed interpolation experiments to get the best type of articles from recent corpus because collected recent corpus is composed of articles which are related with test set, and which are unrelated. When we made an adapted LM using recent LM with similar articles to test set through Tf-Idf method and existing LM, we got the best result that ERR of pseudo-morpheme based recognition performance has 17.2 % improvement and the number of OOV has reduction from 70 to 27.
International Journal of Internet, Broadcasting and Communication
/
제15권2호
/
pp.196-201
/
2023
In recent years, virtual reality (VR) technology has been widely used in many industrial fields, especially in the fields of medical treatment, games, film and television, to improve the interaction between medical teaching and practical treatment. On the gaming side, the production of virtual reality gaming screens and scenes became increasingly popular, greatly expanding the form of the visual experience. But VR is no longer confined to the health care, education and entertainment industries. During this time, the news media industry has also begun to integrate virtual reality into interviews and user interactions. This study aims to analyze the development of VR technology from the perspectives of immersive VR news experience, real reporting, and prospects, and analyze and think about the interactive participation of media users, the transformation of traditional media, and the upgrading of practitioners' roles.
With the development of the Internet and the increase of smart phones, various services considering user convenience are increasing, so that users can check news in real time anytime and anywhere. However, online news is categorized by media and category, and it provides only a few related search terms, making it difficult to find related news related to keywords. In order to solve this problem, we propose a method to recommend related documents more accurately by applying Doc2Vec similarity to the specific keywords of news articles and weighting the title and contents of news articles. We collect news articles from Naver politics category by web crawling in Java environment, preprocess them, extract topics using LDA modeling, and find similarities using Doc2Vec. To supplement Doc2Vec, we apply TF-IDF to obtain TC(Title Contents) weights for the title and contents of news articles. Then we combine Doc2Vec similarity and TC weight to generate TC weight-similarity and evaluate the similarity between words using PMI technique to confirm the keyword association.
대규모의 실시간 주문형 뉴스 제공 시스템(Real Time News On Demand)에서는 다수의 사용자들이 디스크에 저장된 뉴스 데이터를 실시간으로 동시에 접근하여 최대로 수용할 수 있는 사용자 수는 총 디스크 대역폭의 제한을 받는다. 본 연구에서는 이러한 디스크 대역폭의 한계를 극복하기 위하여 디스크 비용의 일부로 버퍼 캐쉬를 구성하여 실시간 뉴스 데이터에 적합하도록 버퍼를 블록 단위가 아닌 오브젝트 단위로 할당하는 버퍼 캐쉬 정책을 사용하고, 캐슁 대상 뉴스 데이터를 현재의 디스크 대역폭의 사용 정도와 해당 뉴스 데이터의 평균 요청 간격을 고려하여 선별함으로써 재접근 가능서이 낮은 데이터의 경우 캐슁 대상에서 제외시켜 볼 필요한 버퍼의 재 할당에 의한 메모리 오버헤드를 방지하는 실시간 뉴스 데이터에 적합한 캐슁 방법을 제안한다. 이렇게 함으로써 접근 빈도수가 높은 데이터의 경우 디스크의 접근 없이도 데이터의 획득이 가능하게 되어 디스크만으로 저장 시스템을 구성할 때와 비교하여 저 비용으로 저장 시스템을 구성할 수 있다. 본 논문에서 제안한 알고리즘의 성능을 시뮬레이션을 통하여 평가한 결과, 본 논문에서 제안한 캐슁 방법으로 뉴스 데이터에 대한 사용자의 요청을 처리했을 경우, 디스크만으로 저장 서버를 구성하였을 경우보다 30% 이상의 사용자를 지원할 수 있다.
매체 기술의 발달에 따라 뉴스전달의 흐름이 일방향에서 쌍방향으로, 뉴스 수용자가 적극적인 이용자로 새로이 자리매김 해가는 추세다. 이러한 상황 인식을 바탕으로 본 연구는 온라인 뉴스 제공자로서의 포털 뉴스 사이트와 뉴스 소비자로서의 네티즌이 상호 어떤 인식을 갖고 있는지 탐구하는 데에 그 목적을 두었다. 이를 위해 포털 뉴스의 매체적인 특성을 쌍방향상으로 인한 적극적 이용자 부상, 뉴스 제공자와 시민기자로의 확장, 선택권의 확대(이용자 특성), 컨텐츠 업데이트, 컨텐츠 분량의 무제한성, 하이퍼텍스트성, 컨텐츠 보존성, 멀티미디어 컨텐츠 제공(컨텐츠 특성) 등 8가지를 추출하고 그에 대한 이용자와 사용자간 상호인식을 채피와 맥리오드의 상호지향성 모형을 적용해 알아보았다. 연구결과 이용자 특성에 관한 문항은 부분 일치로, 서로 일치하는 인식에 대해 이용자들이 오해를 하고 있었던 반면, 컨텐츠 특성 항목에서는 대부분의 문항에서 제공자가 더 긍정적인 인식을 갖고 있는 것으로 나타났다. 이는 포털을 통한 뉴스전달방식에 대해 제공자와 이용자가 아직 상호 지향되지 않고 있으며, 이는 새로운 매체실험에 따른 역동성의 결과로서 향후 상호지향을 위한 커뮤니케이션의 증대를 시사한다.
소셜 미디어 정보는 실시간으로 가장 최신의 정보의 획득을 가능하게 하며, 확산 속도가 빠르고 형태의 제약 없이 유연하게 생산 및 유통할 수 있다는 강점이 있으며, 최근 경제변수들의 예측에 있어서 소셜 미디어 정보를 이용한 예측의 활용 방안에 대한 논의가 활발히 이루어지고 있다. 본 논문에서는 실업률을 예측함에 있어 소셜 미디어 정보 유형 중 하나인 Google Index 정보를 이용하여 시계열 모형 중 하나인 ARIMAX 모형과 ECM 모형을 적합하였고, 모형의 예측력을 비교하기 위해 기존의 ARIMA 모형과의 비교를 수행하였다. 또한, 소셜 미디어 정보 이용에 있어 Google Index 뿐만 아니라 국내 소셜 미디어 정보인 News Index와의 결합을 통해 예측력의 제고 가능성을 확인하였다. 본 연구에서 다루어진 분석 절차와 통계적 모형의 적합과정은 실업률 외의 주요 사회, 경제지표에도 적용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.