• 제목/요약/키워드: Real coded genetic algorithm (RCGA)

검색결과 53건 처리시간 0.024초

성능지수와 제약조건을 고려한 불안정 시스템의 제어 (Control of Unstable Systems Concerned with the Performance Indexes and Constraints)

  • 안종갑;이윤형;소명옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.785-790
    • /
    • 2008
  • A technique for determining the feedback gain of the states feedback controller using a real-coded genetic algorithm(RCGA) is presented. It is concerned with the states error to the performance index of a RCGA. As for assessing the performance of the controller three performance criteria (ISE. IAE and ITAE) are adopted. And designing the controller involves a constrained optimization problem. Therefore a real-coded genetic algorithm incorporating the penalty strategy is used. The performance of the proposed method is demonstrated through a set of simulation about an inverted pendulum system.

실수코딩 유전알고리즘에 관한 연구 (A Study on a Real-Coded Genetic Algorithm)

  • 진강규;주상래
    • 제어로봇시스템학회논문지
    • /
    • 제6권4호
    • /
    • pp.268-275
    • /
    • 2000
  • The increasing technological demands of today call for complex systems, which in turn involve a series of optimization problems with some equality or inequality constraints. In this paper, we presents a real-coded genetic algorithm(RCGA) as an optimization tool which is implemented by three genetic operators based on real coding representation. Through a lot of simulation works, the optimum settings of its control parameters are obtained on the basis of global off-line robustness for use in off-line applications. Two optimization problems are Presented to illustrate the usefulness of the RCGA. In case of a constrained problem, a penalty strategy is incorporated to transform the constrained problem into an unconstrained problem by penalizing infeasible solutions.

  • PDF

실수코딩 유전알고리즘을 이용한 자기베어링 제어시스템 파라미터의 동정 (The Identification of the Magnetic Bearing Control System's Parameters using RCGA)

  • 정황훈;김영복;양주호
    • 동력기계공학회지
    • /
    • 제13권4호
    • /
    • pp.68-73
    • /
    • 2009
  • The mathematical model has a different response character with the real system because this mathematical model has the modeling errors and the imprecise value of system's parameters. Therefore to find the value of system parameters as possible as near by real value in the model is necessary to design the controlled system. This study concern about the identification method to estimate the parameter for the magnetic bearing system with RCGA(Real Coded Genetic Algorithm). Firstly, we will get the mathematical model from the current amplifier circuit and the magnetic bearing system. Secondly we will get the step response data in this circuit and system. Finally, we will estimate the unknown parameter's value from the data.

  • PDF

RCGA를 이용한 도립진자 시스템의 파라미터 추정 및 안정화 제어 (RCGA-Based Parameter Estimation and Stabilization Control of an Inverted Pendulum System)

  • 안종갑;이윤형;유희한;소명옥;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권6호
    • /
    • pp.746-752
    • /
    • 2006
  • This paper presents a scheme for the parameter estimation and stabilization of unstable systems, such as inverted pendulum systems. First a stable feedback loop is constructed for an inverted pendulum system and then its parameters are estimated based on input-output data, a real-coded genetic algorithm(RCGA) and the model adjustment technique. Then, a PI-type LQ control scheme is designed based on the estimated model. The performance of the proposed algorithm is demonstrated through a set of simulation and experiment.

RCGA를 이용한 PID 제어기의 모델기반 동조규칙 (Model-based Tuning Rules of the PID Controller Using Real-coded Genetic Algorithms)

  • 김도응;진강규
    • 제어로봇시스템학회논문지
    • /
    • 제8권12호
    • /
    • pp.1056-1060
    • /
    • 2002
  • Model-based tuning rules of the PID controller are proposed incorporating with real-coded genetic algorithms. The optimal parameter sets of the PID controller for step set-point tracking are obtained based on the first-order time delay model and a real-coded genetic algorithm as an optimization tool. As for assessing the performance of the controllers, performance indices(ISE, IAE and ITAE) are adopted. Then tuning rules are derived using the tuned parameter sets, potential rule models and another real-coded genetic algorithm A set of simulation works is carried out to verify the effectiveness of the proposed rules.

RCGA에 기초한 선박 가스터빈 엔진용 PID 제어기의 동조 (RCGA-Based Tuning of the PID Controller for Marine Gas Turbine Engines)

  • 소명옥;정병건;진강규;진선호;이윤형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.116-123
    • /
    • 2005
  • The PID controllers have been widely accepted in many industrial systems due to their robust performance in a wide range of operating conditions and their functional simplicity To implement a PID controller, its three parameters must be determined for the given plant. Conventional tuning methods are mainly based on experience and experiment and are lack of systematic procedure Recently. to overcome drawbacks of conventional tuning methods, genetic algorithms have been used, In this paper a real-coded genetic algorithm is employed to search for the optimal parameters of the PID controller for speed control of marine gas turbine engines. Simulation results show the effectiveness of the proposed scheme.

Real-Coded Genetic Algorithm Based Design and Analysis of an Auto-Tuning Fuzzy Logic PSS

  • Hooshmand, Rahmat-Allah;Ataei, Mohammad
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권2호
    • /
    • pp.178-187
    • /
    • 2007
  • One important issue in power systems is dynamic instability due to loosing balance relation between electrical generation and a varying load demand that justifies the necessity of stabilization. Moreover, Power System Stabilizer (PSS) must have capability of producing appropriate stabilizing signals over a wide range of operating conditions and disturbances. To overcome these drawbacks, this paper proposes a new method for robust design of PSS by using an auto-tuning fuzzy control in combination with Real-Coded Genetic Algorithm (RCGA). This method includes two fuzzy controllers; internal fuzzy controller and supervisor fuzzy controller. The supervisor controller tunes the internal one by on-line applying of nonlinear scaling factors to inputs and outputs. The RCGA-based method is used for off-line training of this supervisor controller. The proposed PSS is tested in three operational conditions; nominal load, heavy load, and in the case of fault occurrence in transmission line. The simulation results are provided to compare the proposed PSS with conventional fuzzy PSS and conventional PSS. By evaluating the simulation results, it is shown that the performance and robustness of proposed PSS in different operating conditions is more acceptable

RCGA를 이용한 외란제거용 PID 제어기의 동조규칙 (Tuning Rules of the PID Controller Using RCGAs)

  • 김민정;이윤형;우은경;진강규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.87-88
    • /
    • 2006
  • In this paper, tuning rules of the PID controller for load disturbance rejection are proposed incorporating with real-coded genetic algorithms(RCGAs). The optimal parameters sets of the PID controller are obtained based on a first-order plus time delay model and a RCGA. As for assessing the performance of the controller, criteria(ISE, IAE and ITAE) are adopted. Then tuning formulae are derived using the tuned parameters sets, potential tuning rule models and another RCGA. A simulation work is carried out to verify the effectiveness of the proposed rules.

  • PDF

RCGA를 이용한 외란제거용 PID 제어기의 동조규칙 (Tuning Rules of the PID Controller Using RCGAs)

  • 김민정;이윤형;소명옥;하윤수;황승욱;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권4호
    • /
    • pp.448-454
    • /
    • 2007
  • The new tuning rules of the PID controller for the rejection of load disturbance are proposed incorporating with real-coded genetic algorithms (RCGAs). The optimal gain parameters of the PID controller for a first-order plus time delay model are obtained based on a RCGA. Then tuning formula are derived using the tuned parameters sets potential tuning rule models and another RCGA. The performance criteria of the controller are adopted as ISE, IAE and ITAE. A series of simulation are carried out to verify the effectiveness of the proposed tuning rules.

Ziegler-Nichols를 이용한 실수코딩 유전 알고리즘 기반의 PID 튜닝 (PID Tuning Based on RCGA Using Ziegler-Nichols Method)

  • 박지모;김고은;김진성;박성만;허훈
    • 한국소음진동공학회논문집
    • /
    • 제19권5호
    • /
    • pp.475-481
    • /
    • 2009
  • Real-coded genetic algorithm(RCGA) has better performances than conventional genetic algorithm about dealing with a large domain, the precision and the constrain problem. Also the RCGA has advantage of operation time because it doesn't have to following about decoding operation. In this paper the ranges of PID gains are limited based on Ziegler-Nichols method to consider a long operation time problem that is the main problem of genetic algorithm. Result shows proposed method represents better performance without ignored about result of ZN tuning method and reduces the calculation time.