• Title/Summary/Keyword: Reactive oxygen

Search Result 3,139, Processing Time 0.034 seconds

Effect of Ethanol Extracts of Goat's Beard on Streptozotocin Induced Diabetic Symptoms and Oxidative Stress in Rats (삼나물 에탄올 추출물이 Streptozotocin으로 유발한 흰쥐의 당뇨증상과 산화적 스트레스에 미치는 영향)

  • Shin, Jong-Wook;Lee, Sang-Il;Woo, Mi-Hee;Kim, Soon-Dong
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.6
    • /
    • pp.939-948
    • /
    • 2008
  • The effects of goat's beard (Aruncus dioicus var ramtschaticus Hara) ethanol extracts (AD) on the streptozotocin-induced diabetic symptoms and oxidative stress in rats were assessed. Experimental plots were divided into normal controls (NC), diabetes controls (DM), diet with 0.3% AD after diabetes induction (SA), and diet with 0.6% AD after diabetes induction (SB), then fed for 5 weeks. In the SA and SB groups as compared with the DM group, diabetic symptoms including weight loss, increase in feed and water intake, and enlargement of the liver and kidney were improved. The levels of blood glucose and serum fructosamine were reduced by $17.9{\sim}27.2%$ and $25.6{\sim}32.6%$, respectively. The activities of alanine aminotransferase, aspartate aminotransferase and the levels of triglycerides, total cholesterol, and LDL-cholesterol in the serum were reduced by $25.6{\sim}30.3$, $42.37{\sim}55.51$, $26.85{\sim}30.44$ and $37.29{\sim}39.11%$, respectively, whereas the level of HDL-cholesterol was increased by $37.29{\sim}39.11%$. Hepatic total (T) and O type (O) activities of xanthine oxidoreductase, O/T ratio(%) and level of lipid peroxide were significantly decreased, while the level of glutathione was increased, and also the activities of superoxide dismutase and glutathione S-transferase were increased by $56.84{\sim}94.90%$ and $57.14{\sim}68.92%$, respectively. In the above results, it was noted that AD has an antidiabetic effect which alleviated hyperglycemia and the AD reduced and/or prevented the tissue damage caused by diabetes yia the inhibition of reactive oxygen species (ROS) generating systems concurrent with an increase in ROS scavenging.

  • PDF

Effects of Onion Flesh and Peel on Chemical Components, Antioxidant and Anticancer Activities (양파 육질 및 껍질의 화학성분과 항산화 및 항암 활성 비교)

  • Jang, Joo-Ri;Lim, Sun-Young
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1598-1604
    • /
    • 2009
  • In order to determine chemical components of onion flesh and peel, general nutrients, vitamin C, and total flavonoids were measured. Onion peel showed less moisture (14.3%) and no vitamin C compared to onion flesh. Onion peel contained more amounts of total flavonoids compared to onion flesh. In addition, the inhibitory effects of solvent extracts from onion flesh and peel on $H_2O_$-induced oxidative stress and growth of cancer cell lines (AGS human gastric adenocarcinoma and HT-29 human colon cancer cells) were investigated. Acetone with methylene chloride (A+M) and methanol (MeOH) extracts from onion flesh and peel appeared to significantly reduce the levels of intracellular reactive oxygen species (ROS) (p<0.05) and a greater antioxidant effect was observed in onion peel. Among fractions, 85% aq. methanol showed a higher protective activity against oxidative stress in both flesh and peel and there was no effect in the water and hexane fractions. The growth of cancer cells exposed to medium containing extracts and fractions from onion flesh and peel was inhibited dose-dependently. The growth of AGS was inhibited more in both flesh and peel compared to HT-29, and onion peel was more effective than onion flesh. Among fractions, 85% aq. methanol showed the greatest effect on growth inhibition in both flesh and peel. $IC_{50}$ values of 85% aq. methanol fraction from onion flesh and peel on AGS were 0.04 and 0.03 mg/ml, respectively, while those on HT-29 were 0.23 and 0.04 mg/ml. From our results, 85% aq. methanol fraction had an inhibitory effect against oxidative stress and growth of cancer cells, suggesting that it may contain biological active compounds.

Sargassum sp. Attenuates Oxidative Stress and Suppresses Lipid Accumulation in vitro (모자반추출물의 항산화활성 및 지방세포 생성억제 효과)

  • Kim, Jung-Ae;Karadeniz, Fatih;Ahn, Byul-Nim;Kwon, Myeong Sook;Mun, Ok-Ju;Kim, Mihyang;Lee, Sang-Hyeon;Yu, Ki Hwan;Kim, Yuck Yong;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.274-283
    • /
    • 2014
  • Oxidative stress causes tissue damage and facilitates the progression of metabolic diseases, including diabetes, cardiovascular heart diseases, and obesity. Lipid accumulation and obesity-related complications have been observed in the presence of extensive oxidative stress. As part of an ongoing study to develop therapeutic supplements, Sargassum sp. were tested for their ability to scavenge free radicals and intracellular reactive oxygen species (ROS), as well as to suppress lipid accumulation. Three species, S. hemiphyllum, S. thunbergii, and Sargassum horneri, were shown to scavenge free radicals in a di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) assay. In addition, Sargassum sp. was shown to scavenge intracellular ROS and to decrease nitric oxide (NO) production in $H_2O_2$ and lipopolysaccharide (LPS)-induced in RAW264.7 mouse macrophages, respectively. Taken together, the results suggest that Sargassum sp. possess huge potential to relieve oxidative stress and related complications, as well as lipid-induced oxidation. They indicate that S. hemiphyllum, S. thunbergii, and S. horneri are potent functional supplements that can produce beneficial health effects through antioxidant and antiobesity activities, with S. hemiphyllum being the most potent among the Sargassum sp. tested. A potential mechanism for the effect of Sargassum sp. on the suppression of lipid accumulation in differentiating 3T3-L1 mouse preadipocytes through deactivation of the peroxisome proliferator-activated receptor ${\gamma}$ (PPAR ${\gamma}$) is presented.

The Effect of Translationally Controlled Tumor Protein (TCTP) of the Arctic Copepod Calanus glacialis on Protecting Escherichia coli Cells against Oxidative Stress (북극 동물플랑크톤 Calanus glacialis TCTP (Translationally Controlled Tumor Protein)가 산화적 스트레스 상태에서 E. coli 세포의 저항성에 미치는 효과)

  • Park, Yu Kyung;Lee, Chang-Eun;Lee, Hyoungseok;Koh, Hye Yeon;Kim, Sojin;Lee, Sung Gu;Kim, Jung Eun;Yim, Joung Han;Hong, Ju-Mi;Kim, Ryeo-Ok;Han, Se Jong;Kim, Il-Chan
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.931-938
    • /
    • 2020
  • Translationally controlled tumor protein (TCTP) is one of the most abundant proteins in various eukaryotic organisms. TCTPs play important roles in cell physiological processes in cancer, cell proliferation, gene regulation, and heat shock response. TCTP is also considered an important factor in the resistance to oxidative stress induced by dithiothreitol or hydrogen peroxide (H2O2). Arctic calanoid copepods have a variety of antioxidant defense systems to regulate the levels of potentially harmful reactive oxygen species generated by ultraviolet radiation in the Arctic marine ecosystem. However, information on the antioxidant activity of TCTP in the Arctic Calanus glacialis is still scarce. To understand the putative antioxidant function of the Arctic copepod C. glacialis TCTP (Cg-TCTP), its gene was cloned and sequenced. The Cg-TCTP comprised 522 bp and encoded a 174-amino acid putative protein with a calculated molecular weight of ~23 kDa. The recombinant Cg-TCTP (Cg-r TCTP) gene was overexpressed in Escherichia coli (BL21), and Cg-rTCTP-transformed cells were grown in the presence or absence of H2O2. Cg-rTCTP-transformed E. coli showed increased tolerance to high H2O2 concentrations. Therefore, TCTP may be an important antioxidant protein related to tolerance of the Arctic copepod C. glacialis to oxidative stress in the harsh environment of the Arctic Ocean.

Suppressive Effect of Acorn (Quercus acutissima Carr.) Extracts in 3T3-L1 Preadipocytes (도토리 추출물의 3T3-L1 세포 분화억제 효과)

  • Kim, Ji-Yeon;Lee, Jin;Lee, Chang-Won;Kim, Ae-Jung
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.4
    • /
    • pp.650-657
    • /
    • 2015
  • This study aimed to investigate the suppressive effect of acorn extracts, by evaluating 70% ethanol extract (AE) and hot water extract (AW) using 3T3-L1 preadipocytes. We applied various levels (0, 100, 200, 300 and $500 {\mu}g/mL$) of AE and AW to 3T3-L1 preadipocytes. The cell viability of the 3T3-L1 preadipocytes was not affected by up $300 {\mu}g/mL$ of extracts, but was suppressed by level $500{\mu}g/mL$ of both AE and AW by 20% and 9% respectively. The accumulation of lipid droplets in differentiated 3T3-L1 preadipocytes was dose-dependently suppressed by AE and AW. Especially, at high concentrations ($300{\mu}g/mL$), AE (42%) was more effective than AW (41%). Reactive oxygen species (ROS) was also dose-dependently suppressed by treatment with AE (58%) and AW (52%). With regard to the mRNA related to differentiated 3T3-L1 preadipocytes, $PPAR-{\gamma}$ and aP2 were suppressed by treatment with AE (54 and 40%) and AW (38 and 18%). From our results, acorn extract (AE) has more suppressive effects than AW in differentiated 3T3-L1 preadipocytes. We therefore concluded that acorn has suppressive effects against obesity in differentiated 3T3-L1 cells due to antioxidation.

Components and Biological Activity of Aqueous Extract Isolated from Winged Stem of Euonymus alatus (화살나무 물 추출물의 구성성분과 생리활성)

  • Oh, Bong-Yun;Hwang, Soo-Kyung;Cheong, Mi-Young;Sin, Hong-Sig;Park, Bock-Hee;Lee, Jeong-Ho;Kim, Soo-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.898-904
    • /
    • 2005
  • Although Euonymus alatus (EA) has been used as traditional medicine for cancer treatment, exact substances involved in curing of the disease are not yet known. Free radical scavenging and reactive oxygen species (ROS) removal activities of aqueous extract components isolated from winged stem of EA in animal cell line were investigated. Aqueous extract of EA (AEEA) was fractionated by ultrafiltration. All fractions mainly consisted of polysaccharide (44.8%), protein (2.1%), small amounts of phenol compounds and organic acids. Antioxidant activity of AEEA increased depending on concentration fractions, as determined by 1,1-diphenyl-2-picrylhydrazyl method. ROS removal activity was visualized in Chinese hamster ovary cell line using laser scanning confocal microscope, and AEEA activity increased in order of F IV>F III>F I>F II. These results suggest AETA has bioactive carbohydrates with potentials as functional foods and antioxidants.

Effect of Iron Excess-induced Oxidative Stress on Platelet Aggregation (과잉 철로 유도된 산화적 스트레스가 혈소판 활성화에 미치는 작용)

  • Seo, Geun-Young;Park, Hyo-Jin;Jang, Sung-Geun;Park, Young-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.8
    • /
    • pp.979-984
    • /
    • 2006
  • Although iron is essential for many physiological processes, excess iron can lead to tissue damage by promoting the generation of reactive oxygen species (ROS). There is increasing evidence that ROS might play an important role in the pathogenesis of cardiovascular disease. However, the effects of iron excess on platelet function and the thrombotic response to vascular injury are not well understood. We examined the effects of iron excess-induced oxidative stress and the antioxidants on platelet aggregation. Oxidative stress was accessed by either free iron $(Fe^{+2})$ or hydrogen peroxide $(H_2O_2)$, as well as their combination on washed rabbit platelets (WPs) in vitro. When WPs were stimulated with either $Fe^{+2}$ alone or a subthreshold concentration of collagen, which gave an aggregatory curve with a little effect, and a dose dependent increase in platelet aggregation was observed by increasing concentrations of $Fe^{+2}$ with $H_2O_2$. This aggregation was associated with the iron-catalyzed formation of hydroxyl radicals from $H_2O_2$, and were inhibited by NAD/NADP (proton acceptor), catalase $(H_2O_2\;scavenger)$, tiron (iron chelator), mannitol (hydroxyl radical scavenger), and indomethacin (cyclooxygenase inhibitor), but not by NADH/NADPH (proton donor), superoxide mutase, and aspirin. However, NADH/NADPH, an essential cofactor for the antioxidant capacity by the supply of reducing potentials, showed the effect of an enhanced radical formation, suggesting a role for NADH/NADPH-dependent oxidase. These results suggest that iron $(Fe^{+2})$ can directly interact with washed rabbit platelets and this aggregation be mediated by OH formation as in the Fenton reaction, inhibited by radical scavengers.

Study on the Antioxidative Activities and Anti-Inflammatory Effect of Kaempferol and Kaempferol Rhamnosides (Kaempferol 및 Kaempferol Rhamnosides의 항산화 활성 및 항염 효과에 관한 연구)

  • Lee, Keun-Ha;Cho, Young-Long;Joo, Chul-Gue;Joo, Yeon-Jeong;Kwon, Sun-Sang;Ahn, Soo-Mi;Oh, Su-Jin;Rho, Ho-Sik;Park, Chung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.3
    • /
    • pp.257-264
    • /
    • 2011
  • In this study, to evaluate the antioxidative activities and anti-inflammatory effects of kaempferol and its rhamnosides, we performed the free radical scavenging assay, ROS inhibition assay and TARC (thymus and activation-regulated chemokine) assay. Also, we studied physiological activity of kaempferol and its rhamnosides (${\alpha}$-rhamnoisorobin, afzelin, kaempferitn) by structure-activity relations. The free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activities were determined with kaempferol (62.5 ${\mu}M$) and ${\alpha}$-rhamnoisorobin (50.0 ${\mu}M$) but afzelin and kaempferitrin did not show free radical scavenging activities. Kaempferol showed a 97.5, 57.8, 47.8 % inhibition of ROS (reactive oxygen species) generated at concentrations of 10, 50 and 100 ${\mu}M$, compared to control (100 %). ${\alpha}$-rhamnoisorobin showed a 93.1, 59.1 and 41.4 % inhibition of ROS at the same concentration. We investigated the inhibitory effects of kaempferol and its rhamnosides on TARC expression. Kaempferol showed a 48.8, 5.5 and 4.4 % inhibition of TARC generated at 10, 50 and 100 ${\mu}M$, compared to control. ${\alpha}$-Rhamnoisorobin showed a 88.1, 19.0 and 1.0 % inhibition of TARC generated at the same concentration. In conclusion, these results indicate that kaempferol and ${\alpha}$-rhamnoisorobin have good antioxidative activities and anti-inflammatory effects that could be applicable to new functional cosmetics for anti-aging and anti-inflammation.

Antioxidative Effect and Tyrosinase Inhibitory Activity of the Unripened Fruit Extract of Rubus coreanus Miquel (미성숙 복분자 과실의 항산화 효능 및 타이로시네이즈 저해 활성 평가)

  • Han, Saet Byeol;Kwon, Soon Sik;Kong, Bong Ju;Kim, Kyeong Jin;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.4
    • /
    • pp.295-302
    • /
    • 2013
  • In this study, the antioxidative effects and inhibitory activities of unripened fruit extract of Rubus coreanus Miquel (R. coreanus Miquel) on tyrosinase were investigated and the potential applicability as a cosmeceutical ingredients was evaluated. All experiments were performed with 50% ethanol extract, ethyl acetate fraction and aglycone fraction of unripened fruit extract of R. coreanus Miquel. The DPPH (1,1-diphenyl-2-picrylhydrazyl) scavenging activites ($FSC_{50}$) of 50% ethanol extract (6.56 ${\mu}g/mL$) and ethyl acetate fraction (6.14 ${\mu}g/mL$) of unripened fruit extract of R. coreanus Miquel were higher than (+)-${\alpha}$-tocopherol (8.98 ${\mu}g/mL$), which is known as a typical hydrophobic antioxidant. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of 50% ethanol extract (0.83 ${\mu}g/mL$), ethyl acetate fraction (0.84 ${\mu}g/mL$) and aglycone fraction (1.13 ${\mu}g/mL$) of R. coreanus Miquel on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system were higher than L-ascorbic acid (1.5 ${\mu}g/mL$), which is known as s typical hydrophilic antioxidant. The cellular protective effect of extract and fraction of unripened fruit extract of R. coreanus Miquel on the rose bengal sensitized photohemolysis of human erythrocytes was increased in a concentration dependent manner (1 ~ 50 ${\mu}g/mL$). And 50% ethanol extract in 50 ${\mu}g/mL$ showed the most protective effect among extracts (${\tau}_{50}$ = 296.3 min). The inhibitory effects on tyrosinase of ethyl acetate and agylcone fractions were higher than arbutin. These results indicate that unripened fruit extracts of R. coreanus Miquel can be applied to antioxidant scavenging ROS including radical as an alternative whitening agent to replace arbutin.

Screening of Effective Extraction Conditions for Increasing Antioxidant Activities of Licorice Extracts from Various Countries of Origin (원산지별 감초추출물의 항산화활성 증가를 위한 효율적인 추출조건 탐색)

  • Ha, Ji Hoon;Lee, Hye Mi;Kwon, Soon Sik;Kim, Hae Soo;Kim, Moon Jin;Jeon, So Ha;Jeong, Yoo Min;Hwang, Jun Pil;Park, Jong-Ho;Choi, Yung-Key;Park, Jino;Park, Soo Nam;Park, Dong-Sik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.4
    • /
    • pp.259-269
    • /
    • 2013
  • In this work, licorice extracts were prepared using various extraction conditions such as extraction solvent, temperature, and time from Glycyrrhiza uralensis (G. uralensis) produced in Korea and China and Glycyrrhiza glabra (G. glabra) in Uzbekistan. The optimum extraction condition was selected from the extraction yields and antioxidative activities of extracts. Korea licorice extracts showed the highest free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activity (46.05%) under the extraction condition of 85% ethanol at $60^{\circ}C$ for 6 hours. The prominent ROS (reactive oxygen species) scavenging activity using luminol-dependent chemiluminescence assay and the cellular protective effect against $^1O_2$ induced cellular membrane damage were also shown from the extracts obtained from the same condition. Especially, Korea G. uralensis extracts exhibited the higher prominent protective effect (${\tau}_{50}$ = 116.4 min) than (+)-(+)-${\alpha}$-tocopherol (${\tau}_{50}$ = 28.5 min) and the extraction yield of Korea licorice extract was 18.75%, which is 1.2 times and 2.5 times higher than that of Uzbekistan and China, respectively. These results indicate that the extraction condition of 85% ethanol at $60^{\circ}C$ for 6 hours is optimal to prepare licorice extracts, which can be applicable as anti-oxidative cosmetic materials.