Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.11.931

The Effect of Translationally Controlled Tumor Protein (TCTP) of the Arctic Copepod Calanus glacialis on Protecting Escherichia coli Cells against Oxidative Stress  

Park, Yu Kyung (Division of Life Sciences, Korea Polar Research Institute (KOPRI))
Lee, Chang-Eun (Division of Life Sciences, Korea Polar Research Institute (KOPRI))
Lee, Hyoungseok (Division of Life Sciences, Korea Polar Research Institute (KOPRI))
Koh, Hye Yeon (Division of Life Sciences, Korea Polar Research Institute (KOPRI))
Kim, Sojin (Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital)
Lee, Sung Gu (Division of Life Sciences, Korea Polar Research Institute (KOPRI))
Kim, Jung Eun (Division of Life Sciences, Korea Polar Research Institute (KOPRI))
Yim, Joung Han (Division of Life Sciences, Korea Polar Research Institute (KOPRI))
Hong, Ju-Mi (Division of Life Sciences, Korea Polar Research Institute (KOPRI))
Kim, Ryeo-Ok (Chemicals Research Division, National Institute of Environmental Research)
Han, Se Jong (Division of Life Sciences, Korea Polar Research Institute (KOPRI))
Kim, Il-Chan (Division of Life Sciences, Korea Polar Research Institute (KOPRI))
Publication Information
Journal of Life Science / v.30, no.11, 2020 , pp. 931-938 More about this Journal
Abstract
Translationally controlled tumor protein (TCTP) is one of the most abundant proteins in various eukaryotic organisms. TCTPs play important roles in cell physiological processes in cancer, cell proliferation, gene regulation, and heat shock response. TCTP is also considered an important factor in the resistance to oxidative stress induced by dithiothreitol or hydrogen peroxide (H2O2). Arctic calanoid copepods have a variety of antioxidant defense systems to regulate the levels of potentially harmful reactive oxygen species generated by ultraviolet radiation in the Arctic marine ecosystem. However, information on the antioxidant activity of TCTP in the Arctic Calanus glacialis is still scarce. To understand the putative antioxidant function of the Arctic copepod C. glacialis TCTP (Cg-TCTP), its gene was cloned and sequenced. The Cg-TCTP comprised 522 bp and encoded a 174-amino acid putative protein with a calculated molecular weight of ~23 kDa. The recombinant Cg-TCTP (Cg-r TCTP) gene was overexpressed in Escherichia coli (BL21), and Cg-rTCTP-transformed cells were grown in the presence or absence of H2O2. Cg-rTCTP-transformed E. coli showed increased tolerance to high H2O2 concentrations. Therefore, TCTP may be an important antioxidant protein related to tolerance of the Arctic copepod C. glacialis to oxidative stress in the harsh environment of the Arctic Ocean.
Keywords
Antioxidant; arctic copepod; Calanus glacialis; recombinant TCTP; TCTP;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kwok, K. W. and Leung, K. M. 2005. Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): effects of temperature and salinity. Mar. Pollut. Bull. 51, 830-837.   DOI
2 Lauritano, C., Procaccini, G. and Ianora, A. 2012. Gene expression patterns and stress response in marine copepods. Mar. Environ. Res. 76, 22-31.   DOI
3 Lee, Y. M., Kim, I. C., Jung, S. O. and Lee, J. S. 2005. Analysis of 686 expressed sequence tags (ESTs) from the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda). Mar. Pollut. Bull. 51, 757-768.   DOI
4 Lee, Y. M., Park, T. J., Jung, S. O., Seo, J. S., Park, H. G., Hagiwara, A., Yoon, Y. D. and Lee, J. S. 2006. Cloning and characterization of glutathione S-transferase gene in the intertidal copepod Tigriopus japonicus and its expression after exposure to endocrine-disrupting chemicals. Mar. Environ. Res. 62, S219-223.   DOI
5 Lucibello, M., Gambacurta, A., Zonfrillo, M., Pierimarchi, P., Serafino, A., Rasi, G., Rubartelli, A. and Garaci, E. 2011. TCTP is a critical survival factor that protects cancer cells from oxidative stress-induced cell-death. Exp. Cell. Res. 317, 2479-2489.   DOI
6 Madronich, S., McKenzie, R. L., Bjorn, L. O. and Caldwell, M. M. 1998. Changes in biologically active ultraviolet radiation reaching the Earth's surface. J. Photochem. Photobiol. 46, 5-19.   DOI
7 Mak, C. H., Poon, M. W., Lun, H. M., Kwok, P. Y. and Ko, R. C. 2007. Heat-inducible translationally controlled tumor protein of Trichinella pseudospiralis: cloning and regulation of gene expression. Parasitol. Res. 100, 1105-1111.   DOI
8 Nagano-Ito, M., Banba, A. and Ichikawa, S. 2009. Functional cloning of genes that suppress oxidative stress-induced cell death: TCTP prevents hydrogen peroxide-induced cell death. FEBS Lett. 583, 1363-1367.   DOI
9 Nico, M., Straalen, V. and Roelofs, D. 2012. An introduction to ecological genomics. 2nd ed. Oxford University Press.
10 Obermuller, B., Karsten, U. and Abele, D. 2005. Response of oxidative stress parameters and sunscreening compounds in Arctic amphipods during experimental exposure to maximal natural UVB radiation. J. Experiment. Mar. Bio. Eco. 323, 100-117.   DOI
11 Saito, A., Hayashi, T., Okuno, S., Nishi, T. and Chan, P. H. 2006. Modulation of proline-rich akt substrate survival signaling pathways by oxidative stress in mouse brains after transient focal cerebral ischemia. Stroke 37, 513-517.   DOI
12 Xu, H., He, Y., Yang, X., Liang, L., Zhan, Z., Ye, Y., Yang, X., Lian, F. and Sun, L. 2007. Anti-malarial agent artesunate inhibits TNF-alpha-induced production of proinflammatory cytokines via inhibition of NF-kappaB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblastlike synoviocytes. Rheumatology 46, 920-926.   DOI
13 Sun, J., Wu, Y., Wang, J., Ma, F., Liu, X. and Li, Q. 2008. Novel translationally controlled tumor protein homologue in the buccal gland secretion of Lampetra japonica. Biochimie 90, 1760-1768.   DOI
14 Turschner, S. and Efferth, T. 2009. Drug resistance in Plasmodium: natural products in the fight against malaria. Mini-Rev. Med. Chem. 9, 206-214.   DOI
15 Wang, Z., Qiu, J., Guo, T., B., Liu, A., Wang, Y., Li, Y. and Zhang, J. Z. 2007. Anti-inflammatory properties and regulatory mechanism of a novel derivative of artemisinin in experimental autoimmune encephalomyelitis. J. Immunol. 179, 5958-5965.   DOI
16 Bonnet, C., Perret, E., Dumont, X., Picard, A., Caput, D. and Lenaers, G. 2000. Identification and transcription control of fission yeast genes repressed by an ammonium starvation growth arrest. Yeast 16, 23-33.   DOI
17 Abele, D., Ferreyra, G. A. and Schloss, I. 1999. H2O2 accumulation from photochemical production and atmospheric wet deposition in Antarctic coastal and off-shore waters of Potter Cove, King George Island, South Shetland Islands. Antarct. Sci. 11, 131-139.   DOI
18 Ara, K., Nojima, K. and Hiromi, J. 2002. Acute toxicity of Bunker A and C refined oils to the marine harpacticoid copepod Tigriopus japonicus mori. Bull. Environ. Contam. Toxicol. 69, 104-110.   DOI
19 Bhisutthibhan, J., Pan, X. Q., Hossler, P. A., Walker, D. J., Yowell, C. A., Carlton, J., Dame, J. B. and Meshnick, S. R. 1998. The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J. Biol. Chem. 273, 16192-16198.   DOI
20 Bohm, H., Benndorf, R., Gaestel, M., Gross, B., Nürnberg, P., Kraft, R., Otto, A. and Bielka, H. 1989. The growth-related protein P23 of the Ehrlich ascites tumor: translational control, cloning and primary structure. Biochem. Int. 19, 277-286.
21 Bommer, U. A. and Thiele, B. J. 2004. The translationally controlled tumour protein (TCTP). Int. J. Biochem. Cell. Biol. 36, 379-385.   DOI
22 Browman, H., Rodriguez, C. A., Beland, F., Cullen, J. J., Davis, R. F., Kouwenberg, J. H. M., Kuhn, P. S., McArthur, B., Runge, J. A., St-Pierre, J. F. and Vetter, R. D. 2000. Impact of ultraviolet radiation on marine crustacean zooplankton and ichthyoplankton: a synthesis of results from the estuary and Gulf of St. Lawrence, Canada. Mar. Ecol. Prog. Ser. 199, 293-311.   DOI
23 Dahms, H. U. and Lee, J. S. 2010. UV radiation in marine ectotherms: molecular effects and responses. Aquat. Toxicol. 97, 3-14.   DOI
24 Efferth, T., Dunstan, H., Sauerbrey, A., Miyachi, H. and Chitambar, C. R. 2001. The anti-malarial artesunate is also active against cancer. Int. J. Oncol. 18, 767-773.
25 Efferth, T., Sauerbrey, A., Olbrich, A., Gebhart, E., Rauch, P., Weber, H. O., Hengstler, J. G., Halatsch, M. E., Volm, M., Tew, K. D., Ross, D. D. and Funk, J. O. 2003. Molecular modes of action of artesunate in tumor cell lines. Mol. Pharmacol. 64, 382-394.   DOI
26 Graidist, P., Yazawa, M., Tonganunt, M., Nakatomi, A., Lin, C. C., Chang, J. Y., Phongdara, A. and Fujise, K. 2007. Fortilin binds Ca2+ and blocks Ca2+-dependent apoptosis in vivo. Biochem. J. 408, 181-191.   DOI
27 Efferth, T. 2007. Willmar Schwabe Award 2006: Antiplasmodial and antitumor activity of artemisinin-from bench to bedside. Panta. Med. 73, 299-309.   DOI
28 Eichhorn, T., Winter, D., Büchele, B., Dirdjaja, N., Frank, M., Lehmann, W. D., Mertens, R., Krauth-Siegel, R. L., Simmet, T., Granzin, J. and Efferth, T. 2013. Molecular interaction of artemisinin with translationally controlled tumor protein (TCTP) of Plasmodium falciparum. Biochem. Pharmacol. 85, 38-45.   DOI
29 Formichi, P., Radi, E., Battisti, C., Tarquini, E., Leonini, A., Di Stefano, A. and Federico, A. 2006. Human fibroblasts undergo oxidative stress-induced apoptosis without internucleosomal DNA fragmentation. J. Cell. Physiol. 208, 289-297.   DOI
30 Gnanasekar, M. and Ramaswamy, K. 2007. Translationally controlled tumor protein of Brugia malayi functions as an antioxidant protein. Parasitol. Res. 101, 1533-1540.   DOI
31 Kim, I. C., Lee, C. E., Cho, H. H., Hong, S. G., Lee, J. S., Lee, H. S. and Lee, H. K. 2008. Molecular cloning and expression of the mitochondrial 60-kDa heat shock protein from an Arctic copepod Calanus glacialis. Genes and Genomics 30, 101-111.
32 Hansen, B. H., Altin, D., Rorvik, S. F., Overjordet, I. B., Olsen, A. J. and Nordtug, T. 2011. Comparative study on acute effects of water accommodated fractions of an artificially weathered crude oil on Calanus finmarchicus and Calanus glacialis (Crustacea: Copepoda). Sci. Total. Environ. 409, 704-709.   DOI
33 Hader, D. P., Williamson, C. E., Wangberg, S. Å., Rautio, M., Rose, K. C., Gao, K., Helbling, E. W., Sinha, R. P. and Worrest, R. 2015. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochem. Photobiol. Sci. 14, 108-126.   DOI