• Title/Summary/Keyword: Reactive flow

Search Result 645, Processing Time 0.03 seconds

UPFC Controller Design and Simulation Model (UPFC의 제어기 설계와 시뮬레이션 모델)

  • 한병문;박덕희;박지용
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.49-54
    • /
    • 1998
  • This paper describes a simulation model to analyze the dynamic performance of Unified Power Flow Controller, which adjust flexibly the active and reactive power flow through the ac transmission line. The basic operation was analyzed in detail using equivalent circuits and the design of control system was developed using vector control method. A simulation model with EMTP code was conceived to evaluate the performance of the Unified power Flow Controller. The simulation results show that the developed simulation model is very effective to analyze the dynamic performance of the Unified Power Flow Controller.

  • PDF

GA-based Optimal Reactive Power Dispatch Taking Account of Transmission Loss Re-distribution and Voltage Dependent Load Models (송전손실 재분배와 전압의존형 부하모델을 적용한 GA기반의 무효전력 최적배분)

  • Chae, Myung-Suk;Lee, Myung-Hwan;Kim, Byung-Seop;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.350-353
    • /
    • 2000
  • This paper presents an algorithm for Optimal Reactive Power Dispatch(ORPD) problem based on genetic algorithm. Optimal reactive power dispatch is particularized to the minimization of transmission line losses by suitable selection of generator reactive power outputs and transformer tap settings. To reduce system loss and improve voltage profile, two methods, Loss Re-Distribution Algorithm (LRDA) and Voltage Dependent Load Model (VDLM), are applied to ORPD. The proposed methods have been evaluated on the IEEE 30 bus system. Each of results have been compared with result of load flow.

  • PDF

Real and Reactive Power Control of Battery Energy Storage System (전지전력저장시스템의 유효 및 무효전력제어)

  • Kim, Dae-Won;Choi, Joon-Ho;Jung, Sung-Kyo;Kim, Jae-Chul;Choi, Byoung-Su
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1189-1191
    • /
    • 1999
  • This paper deals with the real and reactive power control of BESS(Battery Energy H Storage System) interconnected to power system. The real and reactive power control of proposed customer side BESS are performed by controlling the amplitude and the phase of inverter output voltage via power flow equation. Also in order to control the amplitude and phase of output voltage of proposed BESS, single-pulse width control method is used. The BESS and controller is implemented and the active and reactive power control is simulated by using the PSCAD/EMTDC simulation program.

  • PDF

Reactive Power Planning Using Linear Programming (선형계획법을 이용한 무효전력 설비 계획)

  • 김정부;박영문
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.10
    • /
    • pp.805-810
    • /
    • 1989
  • This paper presents a method for planning reactive power compensation such as shunt capacitors and reacters so as to maintain bus voltage in acceptable range during steady state operation in power system. The algorithm in this paper decomposes the problem into reactive power planning module for the compensation of bus voltage and load flow module for adjusting the error resulted from the linear approximation. A planning technique is based on linear programming to minimize the amount of added reactive power compensation in each case. Transformer tap settings and generator voltages are adjusted to minimize the compensation. The constraints are the operation limits of the control variables and bus voltages. The result of one sample system is presented to confirm the practical use of the proposed algorithm.

  • PDF

A Study on the Optimum Operational Control of Power System (전렬계통의 합리적 운용제어에 관한 연구)

  • 정재길;박영문
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.10
    • /
    • pp.410-422
    • /
    • 1984
  • This paper presents a new practical method for optimal active and reactive power control for the economic operation in electrical power system, and the programs are developed for digital computer solution. The major features and techniques of this paper are as follows: 1) The method is presented for finding the equivalent active power balance equation applying the sparse Jacobian matrix of power flow equation instead of using B constant as active power balance equation considering transmission loss, and thus for determining directly optimal active power allocation berween generator unitw satisfying the equality and inequality constraints. 2) The method is proposed for solving directly the optimum economim dispatch problem without using gradient method and penalty function for both active and reactive power control. As a result, the computing time are reduced and convergence characteristic is remarkably improved. 3) Unlike most of conventional methods which adopt the transmission loss as a objective function for reactive power control, the total fuel cost of themal power plant is adopted as objective function for both active and reactive power control. consequently, more reasonable and economic profit can be achieved.

Fabrication of Fe3O4 Thin Film using Reactive DC Magnetron Sputtering (반응성 DC 마그네트론 스퍼터링으로 Fe3O4 박막 제조에 관한 연구)

  • Jung, Minkyung;Park, Sungmin;Park, Daewon;Lee, Seong-Rae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.6
    • /
    • pp.378-382
    • /
    • 2009
  • We investigated the effects of deposition conditions on the fabrication of $Fe_{3}O_{4}$ thin films using a reactive DC magnetron sputtering at room temperature. The structural, electrical, and magnetic properties of Fe oxide films dependence on the film thickness, oxygen flow rate, and the substrate crystallinity were also studied. We have successfully fabricated $Fe_{3}O_{4}$ film with thickness of about 10 nm under optimal reactive sputtering conditions. The saturation magnetization, resistivity, and Verwey transition of the $Fe_{3}O_{4}$ film were298 emu/cc, $4.0{\times}10^{-2}{\Omega}cm$, and 125 K, respectively.

OPTIMAL REACTIVE POWER AND VOLTAGE CONTROL USING A NEW MATRIX DECOMPOSITION METHOD (새로운 행렬 분할법을 이용한 최적 무효전력/전압 제어)

  • Park, Young-Moon;Kim, Doo-Hyun;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.202-206
    • /
    • 1989
  • A new algorithm is suggested to solve the optimal reactive power control(optimal VAR control) problem. An efficient computer program based on the latest achievements in the sparse matrix/vector techniques has been developed for this purpose. The model minimizes the real power losses in the system. The constraints include the reactive power limits of the generators, limits on the bus voltages and the operating limits of control variables- the transformer tap positions, generator terminal voltages and switchable reactive power sources. The method developed herein employs linearized sensitivity relationships of power systems to establish both the objective function for minimizing the system losses and the system performance sensitivities relating dependent and control variables. The algorithm consists of two modules, i.e. the Q-V module for reactive power-voltage control, Load flow module for computational error adjustments. In particular, the acceleration factor technique is introduced to enhance the convergence property in Q-module, The combined use of the afore-mentioned two modules ensures more effective and efficient solutions for optimal reactive power dispatch problems. Results of the application of the method to the sample system and other worst-case system demonstrated that the algorithm suggested herein is compared favourably with conventional ones in terms of computation accuracy and convergence characteristics.

  • PDF

Optimal Reactive Power and Voltage Control Using A New Matrix Decomposition Method (새로운 행렬 분할법을 이용한 최적 무효전력/전압제어)

  • 박영문;김두현;김재철
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.3
    • /
    • pp.232-239
    • /
    • 1990
  • A new algorithm is suggested to solve the optimal reactive power and voltage control (optimal VAR control) problem. The model minimizes the real power losses in the system. The constraints include the reactive power limits of the generators, limits on the bus voltages and the operating limits of control variables-the transformer tap positions generator terminal voltages and switchable reactive power sources. The method presented herein, using a newly developed Jacobian decomposition method, employs linearized sensitivity relationships of power systems to establish both the objective function for minimizing the system losses and the system performance sensitivities relating dependent and control variables. The algorithm consists of two modules, i.e. the Q-V module for reactive power-voltage control, and load flow module for computational error adjustments. In particular the acceleration factor technique is introduced to enhance the convergence property in Q-V module. The combined use of the afore-mentioned two modules ensures more effective and efficient solutions for optimal reactive power dispatch problems. Results of the application of the method to a sample system and other worst-case systems demonstrated that the algorithm suggested herein is compared favourably with conventional ones in terms of computation accuracy and convergence characteristics.

  • PDF

Active and Reactive Power Control of the Battery Energy Storage System interconnected with Power Distribution System (배전계통에 연계된 전지전력저장시스템의 유.무효전력 제어)

  • 김재철;문선호;최준호;김응상
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.127-133
    • /
    • 1999
  • Ths paper deals with the active and reactive power control of Battery Energy Storage System (BESS) during its interconnection operation to power distribution system When an interconnection operation of BESS to power distribution system, it is well suited for peak load shaving and distribution voltage compensation by controlling the real and reactive power. Equivalent mxiel of the distribution system and the BESS is derived and power flow equations are presented to control the real and reactive power of BESS. In this paper, to control the active and reactive power of BESS, $P-\delta$ and Q-V control method and ntJIrerical description is presented. To verify the proposed control method, using PSCAD/EMTDC program simulates the active and reactive power control of BESS.f BESS.

  • PDF

An Analysis on Mathematic Classes using Flanders Category System (Flanders 언어상호작용 분석법을 적용한 수학 교과 수업 분석)

  • Lee, Yoon-Gyeong;Lee, Joong-Kweon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.4
    • /
    • pp.902-914
    • /
    • 2014
  • The purpose of this study is to provide useful information by analysis on mathematic classes for improve interactions between teacher and student using the Flanders Category System. For this, mathematic classes were observed by videotapes and recorded, 10 recorded videotapes were selected for analysis the property of linguistic interaction. The collected videotapes and records materials were transcribed by Advanced Flanders(AF) analysis program version 3.54. The detail investigated topics for studying are as follows. 1) What is the property of the Flanders 10 code analysis results? 2) What is the property of main and subsidiary linguistic flow of interaction? 3) What is the property of the Flanders index analysis results? The results of this study are as follow: 1) In Flanders 10 code analysis results, teacher's non-directive speaking is 12.76%, teacher's Indicative speaking is 50.28%, student's reactive speaking is 4.07%, student's voluntary speaking is 9.66%. 2) Among the 10 classes, 5 classes' main flow is 'ask convergent question ${\rightarrow}$ student's reactive speaking ${\rightarrow}$ lecture ${\rightarrow}$ ask convergent question', 2 classes' main flow is 'lecture ${\rightarrow}$ ask convergent question ${\rightarrow}$ student's reactive speaking ${\rightarrow}$ lecture', 3 classes' main and subsidiary flow is 'lecture ${\rightarrow}$ ask convergent question ${\rightarrow}$ lecture ${\rightarrow}$ work'. 3) In indices results, revised I/d ratio, student's speaking ratio, student question, wide answer ratio are higher than analysis standard and indirect ratio, teacher's question ratio are lower than analysis standard.