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ABSTRACT

A new algorithm is suggested to solve the optimal
reactive power control( optimal VAR control )
problem. An efficient computer program based on the
latest achievements in the sparse matrix/vector
techniques has been developed for this purpose. The
model minimizes the real power losses in the system.
The constraints include the reactive power limits of
the generators , limits on the bus voltages and the
operating limits of «control variables- the
transformer tap positions, generator terminal
voltages and switchable reactive power sources. The
method developed herein employs linearized
sensitivity relationships of power systems to
establish both the objective function for minimizing
the system losses and the system ° performance
sensitivities relating dependent and control
variables. The algorithm consists of two modules,
i.e. the Q-V module for reactive power-voltage
control, Load flow module for computational error
adjustments. In particular, the acceleration factor
technique is introduced to enhance the convergence
property in Q-module, The combined use of the
afore-mentioned two modules ensures more effective
and efficient solutions for optimal reactive power
‘dispatch problems. Results of the application of
the method to the sample system and other worst-case
systems demonstrated that the algorithm suggested
herein is compared favourably with conventional ones
in terms of computation accuracy and convergence
characteristics.

I. INTRODUCTION
The control of reactive power and voltages
represents one of the most important activities in
the operation of modern power systems. This control
is known as the "voltage/reactive power" or voltage/
VAR" control. Generically, any changes to the
system configuration or in power demands can result
in higher or lower voltages in the system. This
situation can be improved by the operator by
allocating reactive power sources in the system,

i.e., by adjusting transformer taps, changing
denerator voltages and switching shunt
capacitors/reactors. Also, it is possible to
minimize active power losses or production cost in
systems by reactive power reallocation. The main

objective of this control can be regarded as an
attempt to achieve an overall improvement of system

security, service quality and economy. System
security requires adequate voltage levels and
reactive reserves in ‘order to maintain voltage
stability when critical contingencies occur. The
service quality and economy require appropriate
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at all system nodes and consumer
terminals within tolerable 1limits, in order to
insure adequate reactive power line flows which
result in minimal transmission losses.[1]

voltage control

In the past, many methods using sensitivity
relationships and gradient search technique have
reported to solve reasonably the complexity of this -
voltage/VAR control problem.{2,3] Dommel and Tiney
{4) minimized a nonlinear objective function of

production costs or losses using Kuhn-Tucker
conditions., Hano{2}, Mamandur(51], Elangovan{6}
developed sensitivity relationships to minimize the

system losses.
method of

coordinating
the system.[7]

And, other investigators presented a
minimizing the production cost by
real and reactive power allocations in

This paper presents a new algorithm for solving
reactive power-voltage control problem in order to
obtain the economic operation condition of electric
power system. The suggested method is based upon
two modules coupled to each other. First, @-module
optimally determines the reactive power output of
generators and shunt capacitor/reactor as well as
transformer tap settings with the assumption that
the real power generation is held constant. Second,
the load flow module is used to make the fine
ad justment of the error resulting from the @-module.
The wmain features of the algorithm suggested here
are «summarized as follows:
(1) The Q-V module takes over the objective function
with bus voltages and transformer taps only as
the independent variables. Here, the objective
function is also a linearized version.
Mathematical model is developed by using the
sensitivity relationships between dependent and
control variables for the objective function and
all network performance constraints. This model
is done by decomposing the jacobian matrix of NR
load flow equation which is augmented to include
coefficients representing the changes in real
and reactive power with respect to the changes
in tap settings of* the transformer.[7,8]

In order to preserve the sparsity of constraints

matrix, the system voltages and the transformer

tap settings are adopted as the independent
variables, thus the sparsity technique is fully
utilized in performing Q-module.

(4) By introducing the accelerating factor, the
convergence property to the optimal operation
condition, without =zigzagging or oscillation,
is obtained.
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I1. MATHEMATICAL MODEL

II-1. Constraints

All system performance constraints to be satisfied
and control variable constraints to be maintained
are as follows:

are constrained
and  the load bus
upper and lower limit by

The generator voltage magnitudes
by the limits on the excitation
voltage magnitudes have

service performance sense,
Vmin <€ V < Vmax ———— 1)
where,

v ¢ vector of bus vpltage

{<)max : upper bound of (-}

{ <)min : lower bound of (.)

The reactive power generation of all generators have

their upper and lower values limited by the design
specifications. Also the load bus which have
reactive power compensation devices are assumed
to have finite capacity.
Quin £ Q@ £ Quax == 2
where,

Q : vector of reactive power generation

There are also physical limits for the upper and
lower values of transformer tap settings.

Tmin . < T < Tmax ——— {3
where,

T : vector of transformer tap ratio
And the system is constrained by the real and

reactive power supply and demand balance equation.

c(P,Qy=90 Y Y
where,
P : vector of real power generation
In general, the transmission line capacity is
constrained by the physical property of  the
conductor such as thermal capacity.
H{V,5}) < Hmax ~—= {5}
where,
& . vector of bus voltage angle
Defining aVmax = Vmax - V
AVmin = Vmin -V
AQmax = Qax - @
AQmin = Qmin - Q
aTmax = Tmax - T
A'Thin = Tmin - T,
constraints { 1 ) - ( 5 ) can be modified as :
AVmin < AV < AVmax
anin & AQ < AQmax ——= {6 )
ATmin < AT < ATmax
G (AP, 4Q ) = 0
H { aV, a8) < Hmax
11-2. Formulation of optimization problem
From equation { 6 }, the optimal reactive power
dispatch problem is mathematically formulated as

follows:

Minimize flaQ )
subject to
AVmin = a4V < avVmax
a@min £ AQ £ agmax -—-—{7)
aTmin < AT < aTmax '
G (&P, 4Q ) = 0
H{aV, a5 ) = Hmax
where, f(4Q) : objective function for Q-optimization
module which is derived in detail
in the later section
Here, 1t 1is noted that 4Q is a dependent variable
depending on control variables aV, aT. The
most important  reason why the bus voltage V is
adopted as control variable in Q-module, is to
preserve the sparsity of constraints matrix. The
consideration of line flow constraints is optional
to avoid unnecessary restrictions that increase

computation
efficiency.

time and deteriorate the computational

11-3 Derivation of sensitivity relationships

The sensitivity relationships between the control
variables and the dependent variables are derived
as!

Partitioning the jacobian matrix defined from the

power flow calculation using the Newton Raphson
method,
APs ‘Ldes . Jpvs i Jpts Al s
e o] e Tt I Ut
| |
APg X . ; agg
Jpd 1 Jpv . Jpt
APl b= R BCRS Bl
1 osae :' S8e : <9<
AQsge !' Jad v Jqv 1 Jqt AV
ISR O T U S [ [,
H R Y
AQL’ wagd 1 oJgv 0 Jqt aT
where,

subscript/superscript s,g,c,1,1’ indices for
the slack generator, other generator,
load bus with the reactive power
compensation devices, total load bus,
load bus without the reactive power
compensation devices, respectively.

Using the condition that the phase angle of slack
bus does not change, & s= 0, the incremental real
power can be derived from equation ( 8 ) in terms
of power angle as @

ah g

aPs = Jpds + Jpvs-aV + JIpts-aT -——{9)

ad 1l

aPg Ad g

+ Jpv-8V + Jpt-aT —--—— ( 10 )

APl a5l

With the use of equations ( 9 ) and ( 10}, we get

apg

=i -t
4Ps = Jpds-Jpd + | Jpvs - Jpds. Jpd.Jpv | aV

aPl

+ | dpts - Jpds-Jpd-Jpt | 4T —_— 11

Let Jb= Jp\'s—deSn]{xi-‘~Jp\z', Je= Jpts-Jpds. de‘!th.
Supposing that the rea
constant  value, 4Pl =
transfermed into :

power of load bus
equation ( 11 )

is

1
0, is
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APs = Ja.-] APgI + Jb-4V + Jc-AT -—— (12
where,
Ja row vector with the first [m -~ 1]

elements of matrix product Jpds.Jpd"

It is noted that the relation in equation { 12 )
representing the mutual dependency among real
generation powers replaces the conventional supply
and demand balance equation. Also, using another
assumption that the variation of phase angle does

not have an effect on the reactive pover, the
incremental reactive power in equation ( 8 ) is
redefined as:
Y g
aQl’ = Jqv-av + Jqt-aT -—= ( 13
3 s3¢
aQsgc = Jqv-av + Jqt -aT -—— { 14}
Consequently, from the above equations the Q-

optimization module is summarized as follows:

I1I. Q-OPTIMIZATION MODULE

In constructing the objective function from equation
{ 12 ) for Q-optimization module, it is assumed that
the real power generation P is not changed since
the system state with the optimal real power
generation schedule is the starting point for this

algorithm. With the use of above discussion, the
eguation { 12 ) is transformed into:
4aPs = Jb-aV + Jc-aT —=~= (15 )

In this paper, equation ( 15 ) is used the objective
function for Q-optimization module. Apparently it
looks like an absurd job, however, this is
attributed to the fact that an ‘equivalent
alternative to that of minimizing the system
losses is to minimize the slack power generation.[5]
Consequently, the objective ~ function for
Q-optimization module is converted into the function
of variables, aV, AT only.

[ Jb-avV + Jc-AT ] ---= (16}

the @-module with objective
the system performance
(14 )

f( av, aT ) =

In order to develop
function in equation ( 16 ),
constraints are constructed by the equations

and ( 15 ). The results are summarized as :
Minimize f( aV, &T )
subject to

[y 1y

Jqv-av + Jqt-aT = 0 — (17
. $3e e

a@nin <Jqv-aV + Jqt-aT< AaQmax

AaVmin < AV < aVmax

aThin < aT < aTmax
IV. LOAD FLOW MODULE

The above-mentioned Q—optimiz;ation problem is solved

by using the optimization technique ( G.P.) [9] with

the assumption of the approximated linearized
objective function and constraints as given in
equation ( 17 ). Thus, 1its solutions are not
exact optimal values. Therefore, it is necessary

to use the load flow procedure for making fine
adjustments on those optimal values.

V. COMPUTATIONAL PROCEDURE

The following steps describe
optimal solution of the optimal
dispatch problem discussed above.

how to find an
reactive  power

step 1) Perform the initial power flow calculation

to determine the state of system.
step 2) Calculate Jb, Jc wmatrices and construct
Q-optimization problem in terms of

information drawn from load flow calculation.
step 3) Solve the Q-uptimization problem.
step 4) With the use of control variables AV, AT,

obtained in step 3) and the acceleration
factor introduced to enhance the convergence
property, update the states as:
Ve— V + g-AV
Q@ ——— Q + Jgqvu-AV + Jqtw-aT
Te——— T + 8T
where,

« acceleration factor to ensure the

convergence, the recommended value
is 0.55~0.75 ( by simulation )

As the procedure is iterated, the value of
acceleration factor is changed by the
appropriate weighting value(AWV) ( about
AWV= 0.83 by simulation ).

step 5) For the capacitor/reactor switching and
transformer tap settings, the control
actions have to be rounded to the nearest
step, s0 the control action is realizable.
(This step is also optional)

step 6) Perform the power flow calculation to adjust
the error caused by linearization and obtain
the improved state of system.

START

[ INITIAL LOAD FLOW CALCULATION I

J
1
CALCULATE Jb, Jc, CONSTRUCT ALL CONSTRAINTS
FOR Q-OPTIMIZATION
]

SOLVE Q-OPTIMIZATION PROBLEM

UPDATE VARIABLES Q@ , T, V
Q———Q + ¢-4Q
Te——T + «-AT
Ve——V + «.aV
i
L ROUND CONTROL ACTION TC THE NEAREST STEPS
|
l a= AWV Xy |

1
| LOAD FLOW CA.LCULATION]

Fig.1. FLOW CHART OF ALGORITHM
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step 7) Define the cost regulation as: Table 1 Line data for sample-1 system
previous fuel cost - present fuel cost
CR = : line | bus number impedance tap line
previous fuel cost number ratio | charge
Check whether the absolute value of CR is from to R X
within the predesignated limit (T ) or not.
If the answer is negative, the process will 1 1 2 0.0015 0.0013 0.02
be repeated from step 2), otherwise the 2 2 3 0.0092 0.2205} 0.900
results will be printed out and the process 3 4 5 0.0399 0.1276
will be terminated. 4 5 6 0.0393 0.1276
5 6 3 0.0000 0.5000
The above computational procedure is schematized g ; g 88(1)(7)? 8208(8)
in the flow chart in Fig.l. 8 8 10 |0.0000 o:eggo 0.975
g 8 9 4.0198 0.0150
10 9 7 0.0000 0.6280
VI. SAMPLE STUDIES 11 10 o1 0.1488 1.4126
12 5 11 0.0399 0.1276
The new algorithm developed in previous sections 13 5 12 0.0399 0.1276| 1.050
has been applied to the sample systems in order to
demonstrate its efficiency and availability.
Table 2 Bus data of sample~1 system (in p.u.
VI-1. Sample-1 system
The sample~-l system with, 12 buses, 13 lines, 3 bus Generation Load
generatars, 3 tap-changing transformers and number | P Qlp Q
1 shunt capacitor bank was used as the model system.
Fig.2. shows one line diagram of this system. 1 0.000  0.000| 0.000 0.000
2 0.000 0.000} 0.000 0.000
3 0.000 0.000} 0.035 0.017
4 0.000 0.000} 0.075 0.037
5 0.000 0.000! 0.193 0.094
6 0.000 0.000] 0.000 0.000
7 0.150 ©0.0827} 0.122 0.094
8 0.000 0.000| 0.000 0.000
9 0.000 0.000] 0.000 0.000
10 0.033 0.010] 0.118 0.074
11 0.000 0.000( 0.057 0.028
12 (.000 0,000} 0.130 0.063

O : bus number

% : capactor Bank

@ : genergtor
e

3 tronsformer

Fig.2. one line diagram of sample-1 system

Table 1 summarizes

the line data for the sample-1
system on 100 MVA base, while Table 2 gives bus data.

The operating limits of generator are summarized

in Table 3.
Table 3 Operating limits (in p.u.) of generators
bus Pnin Pmax| Qunin Qmax | Vmin Vmax
number
1 0.0 1.000 g.00 0.5004 0.95 1.01
7 0.0 0.150| 0.00 0.082| 0.95 1.01
10 0.0 0.033 0.00 0.016] 0.95 1.01

Also the limits of other control variables needed
in simulating are shown in Table 4.

Table 4 Limits of other control variables { p.u.)

(i) Transformer tap ratio
1.0-0.0125%NT<. Ti < 1.0+0.0125%NT
NT = number of steps, 1 = transformer bus
0.0125 = step size of transformer

{ii) Load bus voltage

0.95 = vi < 1.01 i = total load bus
(iii} VAR sources
0.0 < Q12 < 0.30
The results drawn from the algorithm presented
in this paper are summarized in Table 5, the
convergence property of real pover losses can be

seen in Fig.3.
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Table 5 Results for the sample-1 system
variable initial state final state

vl 1.0000 / 0.0000 1.0100 / 0.0000
V2 0.9980 / -0.0050 1.0080 7/ -0.0240
V3 1.0080 / -6.0760 1.0040 / -6.4830
v4 0.9340 /-13.3000 0.9790 /-13.3760
v5 0.9150 /-14.4520 0.9730./-14.6160
V6 0.9400 /-12.8550 0.9850 /-12.9710
V7 0.9590 / -6.0400 0.9670 / -6.4960
V8 1.0040 / -6.1500 1.0000 / -6.5610
V9 1.0040 / -6.1520 1.0000 / -6.5450
V1o 0.9800 / -8.3160 0.9620 / -8.7730
Vil 0.9090 /-14.8750 0.9670 /-14.9900
vi2 0.9010 /-15.4300 0.9820 /-15.8800

P1 0.5587 0.5562

P7 0.1500 0.1500

P10 0.3300 0.3300

Ql 0.4947 0.2638

Q7 0.0817 0.0819

Q10 0.0160 0.0170

Q12 0.0000 0.2000

Tl 0.9000 0.9500

T2 0.9750 1.0000

T3 1.0500 1.0250

Loss 1.1060 0.8570

LOSS [Mw)
1.106
0.943
0.907
0.892
0.890
0.861
0.857
INIT 1 2 3 4 5 6

No. of ITERATION

Fig.3. Variation in losses ( sample-1 system )

VI-2. Other Sample systems
The suggested method was tested also by solving
other sample systems. Results of these cases are
not presented in detail in this paper, however,
are satisfactory. .

VII. CONCLUSIONS

This paper has presented the new algorithm for

optimal reactive power / voltage contrcl problem.
The distinct advantages drawn from this study
are summarized as follows:

(a) This algorithm 1is more accurate than the
conventional methods since the sensitivity
relation matrix 1is successively hpdated by
the newly developed method.

(b) The convergence property is enhanced by the
acceleration factor varying with the iteration
steps.

(c) The computation time is much saved since the
highly-sparse characteristics of constraints
matrix can be preserved by adopting bus
voltages as the control variables in
Q-optimization module.

(d) The operator can make the reasonable control
action by using the routine which the increment
of capacitor/ reactor and transformer taps is
rounded to the nearest steps.

(e) The reliable computation accuracy and fast
convergence characteristics obtained in this
methodology  present  the  possibility for
its application to the other areas.
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