• Title/Summary/Keyword: Reaction model

Search Result 2,861, Processing Time 0.038 seconds

A Kinetic Study on the Esterification of Oleic Acid with Methanol in the Presence of Amberlyst-15 (Amberlyst-15 촉매의 존재 하에서 올레산과 메탄올의 에스테르화 반응 속도식 연구)

  • Kim, Young-Joo;Kim, Deog-Keun;Rhee, Young Woo;Park, Soon-Chul;Lee, Jin-Suk
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.621-626
    • /
    • 2005
  • The esterification reaction of free fatty acid with methanol was investigated in the presence of catalyst, Amberlyst-15, producing fatty acid methyl ester, namely, biodiesel. In this paper, the effects of the reaction parameters such as reaction temperature, mole ratio of alcohol to oleic acid and mass of catalyst on the catalytic activity have been examined. The results showed that the reaction rate increased about twice as the temperature increased every $20^{\circ}C$ in the reaction temperature range from 333 K to 373 K. The equilibrium conversion rate of oleic acid increased with the feed mole ratio of alcohol to acid ranging from 6:1 to 44:1. When the feed mole ratio was higher than 44:1, all the results were similar to that of 44:1. As for the influence of the mass of catalyst, the initial reaction rate increased from 1.2 to 1.3 times as the mass of catalyst doubles in the range of the catalyst weight from 5 to 20 wt%. The experiment data obtained were well described by the second reaction rate using a pseudo-homogeneous model.

Epimerization of L-Arabinose for Producing L-Ribose (L-리보스 생산을 위한 L-아라비노스의 에피머반응)

  • Jeon, Young Ju;Song, Sung Moon;Lee, Chang Soo;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.628-632
    • /
    • 2011
  • L-ribose has recently attracted interest as a starting material for antiviral drug. It could be obtained from L-arabinose by epimerization reaction. Epimerization reaction was carried out with molybdenium oxide or molybdic acid catalyst and methanol/water solution. Reaction temperature, methanol percentage, and catalyst kind were selected to find an optimum reaction condition. Ion exhange chromatography was used for separating epimerization reaction mixture, and then HPLC chromatogram of L-ribose fraction obtained to calculate the yield of the reaction. Shodex ion exchange HPLC column(Model SC1011) and Phenomenex Luna $NH_2$ HPLC column were compared to employ a convenient HPLC analysis. It was found that the usage of 20% methanol, $60^{\circ}C$, and 40 g/L molybdic acid gives the best reaction condition with a yield of 21%.

The Effect of Supportive Nursing on the Stress Reaction of Breast Cancer Patients Undergoing Chemotherapy (지지적 간호중재가 암화학요법을 받고 있는 유방암 환자의 스트레스 반응에 미치는 영향)

  • 박점희
    • Journal of Korean Academy of Nursing
    • /
    • v.27 no.4
    • /
    • pp.912-922
    • /
    • 1997
  • The purpose of this study was to examine the effect of supportive nursing on stress reaction of breast cancer patients undergoing chemotherapy. The nonequivalent control group pre-test/post-test design was used for this experimental study. The subjects were 32 patients who were receiving chemotherapy after mastectomies at K hospital in Taegu from June, 1994 to June 1995. Among 32 subjects, 16 were placed in the experimental group and 16 in the control group. The experimental and control groups were tested for general characteristics, trait anxiety, health locus of control, family support, state anxiety, hopelessness, physical stress, and anxiety behavior. Collected data was analized by means of a chisquare test and a t-test for the comparative analysis of the general characteristics and homogeneity of subjects. ANOVA, and MANOVA were used for testing the hypothesis. Reliability of the tools were analyzed using the Pearson Correlation coefficient. The results of this study were as follows : 1. The hypothesis : The stress reaction of the experimental group which took supportive nursing was lower than the stress reaction of the control group : this was supported statistically. The main variable influenced in stress reaction was hopelessness. Supportive nursing for breast cancer patients, who are receiving chemotherapy, was especially effective in the reduction of hopelessness compared to state anxiety, physical stress, and anxiety behavior. 2. An analysis of the difference on stress reaction, according to the frequency of supportive nursing between the control and experimental group, showed the level of hopelessness of the experimental group was lower than the control group after four supportive meeting sessions. But there was no statistical difference in state anxiety, physical stress, and anxiety behavior. In conclusion, this study supported utilization of supportive care as well as demonstrating the effectiveness of the System-Developmental Stress Model developed by Chrisman and Riehl-Sisca.

  • PDF

The distribution of activation energy and frequency factor for coal pyrolysis and char-air reaction (열분해 및 촤 - 공기 반응시의 활성화 에너지 및 빈도계수 분포)

  • Park, Ho-Young;Kim, Young-Joo
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.9-16
    • /
    • 2009
  • The experimental work has been carried out for the study of pyrolysis and char-air reaction of five coals used in Y power station in Korea. For five coals, the characteristics of pyrolyis and char reaction have been investigated with TGA, and their kinetic parameters were obtained and compared each other. The order of pyrolysis rate for five coals were as follows : Peabody, Flame, MIP, Indominco, Elk valley. The behavior of char - air reaction for five coal chars have been successfully described by the grain model. The rate of char-air reaction gave the maximum value for Flame coal char, on the while Elk valley coal char had the minimum value. For the reaction temperature over 1,000K, Flame coal char - air reaction was very fast compared with other coal chars.

Photopolymerization of Reactive Oligomers and Methacrylate/SBS Blends (반응성 올리고머 및 메타아크릴레이트/SBS 블렌드의 광중합)

  • 최영선;류봉기
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.421-428
    • /
    • 2003
  • The kinetics of photoinitiated polymerization of reactive oligomer methacrylates and oligomer methacrylate/SBS blends have been studied to characterize the diffusion-controlled reaction using Fourier Transform Infrared Spectroscopy-Attenuated Total Reflectance (ATR-FTIR). The polymerization rates of reactive oligomer methacrylates and oligomer methacrylate/SBS blends were autocatalytic in nature at the initial stage and then a retardation of the reaction conversion occurred gradually as the polymer matrix became vitrified, and finally the reaction became diffusion controlled. Photopolymerization behavior of methacrylate/SBS blends was well predicted using the diffusion-controlled reaction model. N-Vinyl-2-pyrrolidinone (NVP) as a reactive solvent was used to incorporate SBS into methacrylate to form semi-IPN via photopolymerization. Due to the high reactivity of NVP, polymerization rate increased with the increase of NVP content. As the content of NVP-SBS in the blends increased up to 10 phr, the reaction conversion maintained almost constant. But above 20 phr of NVP-SBS in the blends, the reaction conversion gradually decreased since the increase of viscosity affected on the photopolymerization rate. The semi-IPN films of methacrylate/SBS blends were transparent at room temperature as well as at increased temperature and were able to be applied to surface coating.

Theoretical Evaluation of the Electrophilic Catalyses in Successive Enolization and Reketonization Reactions by Δ5-3-Ketosteroid Isomerase

  • Park, Hwang-Seo;Seh, Jung-Hun;Lee, Sang-Youb
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.837-845
    • /
    • 2002
  • Based on ab initio calculations at the MP2(FULL)/6-31+G**//RHF/6-31G** level, we compare the energetic and mechanistic features of a model reaction for catalytic action of Δ?-3-ketosteroid isomerase (KSL,E.C.5.3,3.1) with those of a corresponding nonenzymatic reaction in aqueous solution. The results show that the two catalytic acid residues,Tyr14 and Asp99, can lower the free energy of activation by 8.6kcal/mol, which is in good agreement with the experimentally predicted~9 kcal/mol,contribution of electrophilic catalyses to the whole enzymatic rate enhancement. The dienolate intermediate formed by proton transfer from the substrate carbon acid to the catalytic base residue (Asp38) ins predicted to be stabilized by 12.0 kcal/mol in the enzymatic reaction, making its formation thermodynamically favorable. It has been argued that enzymes catalyzing the reactions of carbon acids should resolve the thermodynamic problem of stabilizing the enolate intermediate as well as the kinetic porblem of lowering the free energy of activation for porton abstraction. We find that KSI can successfully overcome the thermodynamic difficulty ingerent in the nonenzymatic reaction through the electrophilic catalyses of the two acid residues. Owing to the stabilization of dienolate intermediate, the reketonization step could influence the overall reaction rate more significantly in the KSI- catalyzed reaction than in the nonenzymatic reaction, further supporting the previous experimental findings. However, the electrophilic catalyses alone cannot account for the whole catalygic capability (12-13 kcal/mol), confiming the earlier experimental implications for the invement of additional catalytic components. The present computational study indicates clearly how catalytic residues of KSI resolve the fundamental problems associated with the entropic penalty for forming the rate-limiting transition state and its destabilization in the bulk solvation environment.

Reaction Path Modelling on Geochemical Evolution of Groundwater and Formation of Secondary Minerals in Water-Gneiss Reaction System (편마암-물 반응계에서 지하수의 지화학적 진화 및 이차광물 생성에 관한 반응경로 모델링)

  • 정찬호;김천수;김통권;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.33-44
    • /
    • 1997
  • The reaction path of water-gneiss in 200m borehole at the Soorichi site of Yugu Myeon, Chungnam was simulated by the EQ3NR/EQ6 program. Mineral composition of borehole core and fracture-filling minerals, and chemical composition of groundwater was published by authors. In this study, chemical evolution of groundwater and formation of secondary minerals in water-gneiss system was modelled on the basis of published results. The surface water was used as a starting solution for reaction. Input parameters for modelling such as mineral assemblage and their volume percent, chemical composition of mineral phases, water/rock ratio reactive surface area, dissolution rates of mineral phases were determined by experimental measurement and model fit. EQ6 modelling of the reaction path in water-gneiss system has been carried out by a flow-centered flow through open system which can be considered as a suitable option for fracture flow of groundwater. The modelling results show that reaction time of 133 years is required to reach equilibrium state in water-gneiss system, and evolution of present groundwater will continue to pH 9.45 and higher na ion concentration. The secondary minerals formed from equeous phase are kaolinite, smectite, saponite, muscovite, mesolite, celadonite, microcline and calcite with uincreasing time. Modeling results are comparatively well fitted to pH and chemical composition of borehole groudwater, secondary minerals identified and tritium age of groundwater. The EQ6 modelling results are dependent on reliability of input parameters: water-rock ratio, effective reaction surface area and dissolution rates of mineral phases, which are difficult parameters to be measured.

  • PDF

Kinetics and Equilibrium Study on β-glucosidase under High Hydrostatic Pressure (고압에서 β-glucosidase 반응속도론 및 평형에 관한 연구)

  • Han, Jin Young;Lee, Seung Ju
    • Food Engineering Progress
    • /
    • v.15 no.3
    • /
    • pp.214-220
    • /
    • 2011
  • $\beta$-Glucosidase enzyme reaction under high hydrostatic pressure was investigated in terms of physical chemistry. A model substrate (p-nitrophenyl-${\beta}$-D-glucopyranoside(pNPG)) was used, and the pressure effects on the enzymatic hydrolysis (pNPG${\rightarrow}$pNP) at 25 MPa, 50 MPa, 75 MPa, and 100 MPa were analyzed. Two parts of the reaction such as kinetic and equilibrium stages were considered for mathematical modelling, and their physicochemical parameters such as forward and inverse reaction constants, equilibrium constant, volume change by pressure, etc. were mathematically modeled. The product concentration increased with pressure, and the two stages of reaction were observed. Prediction models were derived to numerically compute the product concentrations according to reaction time over kinetic to equilibrium stages under high pressure condition. Conclusively, the $\beta$-Glucosidase enzyme reaction could be activated by pressurization within 100 MPa, and the developed models were very successful in their prediction.

Quantitative Risk Analysis of a Pervaporation Process for Concentrating Hydrogen Peroxide (과산화수소 농축을 위한 투과증발공정의 정량적 위험성 분석)

  • Jung, Ho Jin;Yoon, Ik Keun;Choi, Soo Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.750-754
    • /
    • 2014
  • Quantitative risk analysis has been performed for a pervaporation process for production of high test peroxide. Potential main accidents are explosion and fire caused by a decomposition reaction. As the target process has a laboratory scale, the consequence is considered to belong to Category 3. An event tree has been developed as a model for occurrence of a decomposition reaction in the target process. The probability functions of the accident causes have been established based on the frequency data of similar events. Using the constructed model, the failure rate has been calculated. The result indicates that additional safety devices are required in order to achieve an acceptable risk level, i.e. an accident frequency less than $10^{-4}/yr$. Therefore, a layer of protection analysis has been applied. As a result, it is suggested to introduce inherently safer design to avoid catalytic reaction, a safety instrumented function to prevent overheating, and a relief system that prevents explosion even if a decomposition reaction occurs. The proposed method is expected to contribute to developing safety management systems for various chemical processes including concentration of hydrogen peroxide.

The Effects of 3-(3,4-dichloro phenyl)-1,1-dimethylurea on the Cure of Epoxy/Dicyandiamide System (3-(3,4-dichloro phenyl)-1,1-dimethylurea이 Epoxy/Dicyandiamide계의 경화에 미치는 영향)

  • Kim, Hyung-Soon;Kim, Wan-Young;Kim, Young-Ja
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.963-969
    • /
    • 1996
  • Cure characteristics of DGEBA(diglycidyl ether of bisphenol A)/dicy(dicyandiamide) system containing diuron(3-(3,4-dichloro phenyl) -1,1-dimethylurea) as an accelerator was investigated. The system has shelf life of six months because dicy is insoluble in liquid/solid resins at room temperature. It is generally known that dicy is an adequate curing agent for one component adhesive due to its highly latent property. With increasing the amount of added dicy, reaction heat of DGEBA/dicy system increased and degree of conversion was not varied. For DGEBA/dicy/diuron system, cure temperature decreased about $40^{\circ}C$ and cure reaction became fast by the addition of diuron which activates dicy. $T_g$ of the mixed resin decreased with the amount of accelerator. which was interpreated with molecular structure forming loose chain. Cure kinetics of DGEBA/dicy and DGEBA/dicy/diuron system were explained using Kamal's autocatalytic reaction model. The effect of acceleration was confirmed with that reaction model.

  • PDF