Photopolymerization of Reactive Oligomers and Methacrylate/SBS Blends

반응성 올리고머 및 메타아크릴레이트/SBS 블렌드의 광중합

  • 최영선 (부산대학교 응용화학공학부) ;
  • 류봉기 (부산대학교 재료공학부)
  • Published : 2003.09.01

Abstract

The kinetics of photoinitiated polymerization of reactive oligomer methacrylates and oligomer methacrylate/SBS blends have been studied to characterize the diffusion-controlled reaction using Fourier Transform Infrared Spectroscopy-Attenuated Total Reflectance (ATR-FTIR). The polymerization rates of reactive oligomer methacrylates and oligomer methacrylate/SBS blends were autocatalytic in nature at the initial stage and then a retardation of the reaction conversion occurred gradually as the polymer matrix became vitrified, and finally the reaction became diffusion controlled. Photopolymerization behavior of methacrylate/SBS blends was well predicted using the diffusion-controlled reaction model. N-Vinyl-2-pyrrolidinone (NVP) as a reactive solvent was used to incorporate SBS into methacrylate to form semi-IPN via photopolymerization. Due to the high reactivity of NVP, polymerization rate increased with the increase of NVP content. As the content of NVP-SBS in the blends increased up to 10 phr, the reaction conversion maintained almost constant. But above 20 phr of NVP-SBS in the blends, the reaction conversion gradually decreased since the increase of viscosity affected on the photopolymerization rate. The semi-IPN films of methacrylate/SBS blends were transparent at room temperature as well as at increased temperature and were able to be applied to surface coating.

반응성 올리고머 및 메타아크릴레이트/SBS블렌드의 확산에 의해 제어되는 광중합 반응 특성을 ATR-FTR을 이용하여 고찰하였다. 광중합 속도는 반응 초기 단계에서는 자가 가속 현상을 보이며 반응 속도가 급격하게 증가하여 반응이 진행함에 따라 확산에 의한 반응 지연 현상이 관찰된다. 확산 제어항이 도입된 반응 기구 속도식으로 반응 속도를 해석한 결과 전체 반응 구간에서 실험 결과와 잘 일치하였다. SBS의 도입을 위해 사용된 반응성 용매인 N-비닐피롤리돈 (NVP)의 첨가에 의해서 최종 전환율에 이르는 시간은 거의 일정하였으나 전환율은 NVP의 높은 반응성으로 인하여 증가하는 경향을 보였다. 중합 반응 속도도 NVP 첨가에 의하여 증가하는 경향을 보였다. SBS의 첨가시 NVP-SBS의 함량이 10 phr까지는 동일한 전환율 거동을 보이나 NVP-SBS의 함량이 20 phr에서는 현저히 떨어지게 되는데 이는 NVP-SBS의 함량이 20 phr에서는 블렌드의 점도가 증가하여 반응에 영향을 주는 것으로 보인다. NVP-SBS의 함량이 증가함에 따라 중합 반응 속도는 점진적으로 감소함을 알 수 있었다. 메타아크릴레이트./SBS의 블렌드는 상온과 여러 높은 온도 범위에서 상분리가 관찰되지 않았으며 광중합 반응 후에도 투명한 준-IPN을 형성하여 성공적으로 필름 및 코팅에 적용할 수 있었다.

Keywords

References

  1. Polymer v.38 L.Lecamp;B.Youssef;C.Bunel;P.Lebaudy https://doi.org/10.1016/S0032-3861(97)00184-5
  2. Polymer v.33 W.D.Cook https://doi.org/10.1016/0032-3861(92)90882-W
  3. Macromolecules v.22 G.P.Simon;P.E.M.Allen;D.J.Bennet;D.G.R.Williams;E.H.Williams https://doi.org/10.1021/ma00199a010
  4. Europ. Polym. J. v.25 P.E.M.Allen;D.J.Bennet;S.Hagias;A.M.Hornslow;G.S.Ross;G.P.Simon;D.R.G.Williams;E.H.Williams https://doi.org/10.1016/0014-3057(89)90045-1
  5. J. Polym. Sci., Polym. Chem. v.31 W.D.Cook https://doi.org/10.1002/pola.1993.080310428
  6. Polymer v.42 K.A.BerchtoId;L.G.Lovell;J.Nie;B.Hacioglu;C.N.Bowman https://doi.org/10.1016/S0032-3861(00)00723-0
  7. Polym. Int. v.48 M.S.Lin;M.W.Wang https://doi.org/10.1002/(SICI)1097-0126(199912)48:12<1237::AID-PI289>3.0.CO;2-C
  8. Polymer v.40 L.Lecamp;B.Youssef;C.Bunel;P.Lebaudy https://doi.org/10.1016/S0032-3861(98)00380-2
  9. Macromolecules v.27 D.L.Kurdikar;N.A.Peppas https://doi.org/10.1021/ma00093a009
  10. Prog. Org. Coat. v.39 F.Masson;C.Decker;T.Jaworek;R.Schwalm https://doi.org/10.1016/S0300-9440(00)00128-4
  11. Macromolecules v.27 D.L.Kurdikar;N.A.Peppas https://doi.org/10.1021/ma00081a017
  12. Polymer v.35 K.S.Anseth;C.M.Wang;C.N.Bowman https://doi.org/10.1016/0032-3861(94)90129-5
  13. Marcromolecules v.14 T.J.Tulig;M.Tirrell https://doi.org/10.1021/ma50006a070
  14. Macromolecules v.21 G.T.Russel;D.H.Napper;R.G.Gilbert https://doi.org/10.1021/ma00185a044
  15. J .Polym. Sci., Part A : Polym. Chem. v.32 K.S.Anseth;C.N.Bowman;N.A.Peppas https://doi.org/10.1002/pola.1994.080320116
  16. Macromolecules v.28 K.S.Anseth;L.M.Kline;T.A.Walker;K.J.Anderson;C.N.Bowman https://doi.org/10.1021/ma00111a050
  17. Polymer v.42 L.Lecamp;F.Houllier;B.Youssef;C.Bunel https://doi.org/10.1016/S0032-3861(00)00700-X
  18. Vibrational Spectroscopy v.19 T.Scherzer;U.Decker https://doi.org/10.1016/S0924-2031(98)00070-8
  19. Radiat. Phys. Chem. v.55 T.Scherzer;U.Decker https://doi.org/10.1016/S0969-806X(99)00257-1
  20. Polymer v.41 S.Li;R.Vatanparast;H.Lemmetyinen https://doi.org/10.1016/S0032-3861(99)00785-5
  21. Eur. Polym. J. v.36 S.Oprea;S.Vlad;A.Stanciu;M.Macoveanu https://doi.org/10.1016/S0014-3057(99)00077-4
  22. J. Appl. Polym. Sci. v.69 T.Yilmaz;O.Ozarslan;E.Yildiz;A.Kuyulu;E.Ekinci;A.Gungor https://doi.org/10.1002/(SICI)1097-4628(19980829)69:9<1837::AID-APP19>3.0.CO;2-I
  23. Radiat. Phys. Chem. v.46 K.M.I.Ali;T.Sasaki https://doi.org/10.1016/0969-806X(94)00138-A
  24. J. Appl. Polym. Sci. v.81 J.M.Sands;R.E.Jensen,;B.K.Fink;S.H.Mcknight https://doi.org/10.1002/app.1468
  25. Eur. Polym. J. v.35 F.J.Hua;C.P.Hu https://doi.org/10.1016/S0014-3057(98)00048-2
  26. Polymer v.42 C.Decker;T.N.T.Viet;D.Decker;E.Weber-Koehl https://doi.org/10.1016/S0032-3861(01)00065-9
  27. Macromol. Symp. v.159 T.Jaworek;H.H.Bankowsky;R.Koniger;W.Reich;W.Schrof;R.Schwalm https://doi.org/10.1002/1521-3900(200010)159:1<197::AID-MASY197>3.0.CO;2-8
  28. Polym. Eng. Sci. v.27 C.S.Chern;G.W.Poehlein