Kinetics and Equilibrium Study on β-glucosidase under High Hydrostatic Pressure

고압에서 β-glucosidase 반응속도론 및 평형에 관한 연구

  • Han, Jin Young (Department of Food Science and Biotechnology, Dongguk University) ;
  • Lee, Seung Ju (Department of Food Science and Biotechnology, Dongguk University)
  • 한진영 (동국대학교 식품생명공학과) ;
  • 이승주 (동국대학교 식품생명공학과)
  • Received : 2011.04.05
  • Accepted : 2011.07.21
  • Published : 2011.08.31

Abstract

$\beta$-Glucosidase enzyme reaction under high hydrostatic pressure was investigated in terms of physical chemistry. A model substrate (p-nitrophenyl-${\beta}$-D-glucopyranoside(pNPG)) was used, and the pressure effects on the enzymatic hydrolysis (pNPG${\rightarrow}$pNP) at 25 MPa, 50 MPa, 75 MPa, and 100 MPa were analyzed. Two parts of the reaction such as kinetic and equilibrium stages were considered for mathematical modelling, and their physicochemical parameters such as forward and inverse reaction constants, equilibrium constant, volume change by pressure, etc. were mathematically modeled. The product concentration increased with pressure, and the two stages of reaction were observed. Prediction models were derived to numerically compute the product concentrations according to reaction time over kinetic to equilibrium stages under high pressure condition. Conclusively, the $\beta$-Glucosidase enzyme reaction could be activated by pressurization within 100 MPa, and the developed models were very successful in their prediction.

중고압 하에서 $\beta$-glucosidase효소반응을 물리화학적 관점에서 연구하였다. 모델 기질 (p-nitrophenyl-${\beta}$-D-glucopyranoside)에 대한 $\beta$-glucosidase 효소의 작용에 대한 압력 효과를 실험 하였다. 즉, 압력 조건(25MPa, 50 MPa, 75 MPa, 100 MPa)과 시간 (10분, 60분, 1시간, 6시간, 24시간, 40시간)의 처리 조건에서 효소 활성도를 분광학적인 표준방법에 따라 측정하였다. 효소-기질 반응의 단계를 크게 kinetic 구간과 평형 구간으로 구분하여 물리화학적 모델을 적용하여, 정 역반응속도 상수, 평형상수, 압력에 의한 부피 감소 등을 산출하였다. 대기압에서 100MPa까지 압력이 증가할수록 효소-기질 반응의 생성물이 더 많이 형성되었으며 전형적인 kinetic 구간과 평형 구간이 나타났다. 압력, 시간, 생성물농도 등의 데이터로부터 kinetic 구간과 평형에서의 생성물 예측 모델을 완성하였다. 결론적으로 중고압 처리에 의하여 효소-기질 반응이 촉진됨을 알 수 있었고, 임의의 압력 및 시간 조건에 따른 생성물의 농도를 예측할 수 있게 되었다.

Keywords

References

  1. Boyaci IH. 2005. A new approach for determination enzyme kinetic constants using response surface methodology. Biochemical Engineering Journal 25: 55-62. https://doi.org/10.1016/j.bej.2005.04.001
  2. Bruins ME, Janssen AEM, Boom RM. 2006. Equilibrium shifts in enzyme reactions at high pressure. J. Molecular Catalysis B: Enzymatic 39: 124-127. https://doi.org/10.1016/j.molcatb.2006.01.033
  3. Dallet S, Legoy MD. 1996. Hydrostatic pressure induces conformational and catalytic changes on two alcohol dehydrogenases but no oligomeric dissociation. Biochim. Biophys. Acta 1294: 15-24. https://doi.org/10.1016/0167-4838(95)00250-2
  4. Eisenmenger MJ, Reyes-De-Corcuera JI. 2009. High hydrostatic pressure increased stability and activity of immobilized lipase in hexane. Enzyme and Microbial Technology 45: 118-125. https://doi.org/10.1016/j.enzmictec.2009.03.004
  5. Ferreira L, Afonso C, Vila-Real H, Alfaia A, Ribeiro MHL. 2008. Evaluation of the effect of high pressure on naringin hydrolysis in grapefruit juice with naringinase immobilised in calcium alginate beads. Food Technol. Biotechnol. 46:146-50.
  6. Flachner B, Brumbauer A, Reczey K. 1999. Stabilization of betaglucosidase in Aspergillus phoenicis QM 329 pellets. Enzyme and Microbial Technology 24: 362-367. https://doi.org/10.1016/S0141-0229(98)00133-1
  7. Gueguen Y, Chemardin P, Janbon G, Arnaud A, Galzy P. 1996. A very efficient $\beta$-glucosidase catalyst for the hydrolysis of flavor precursors of wines and fruit juices. J. Agric. Food Chem. 44: 2336-2340. https://doi.org/10.1021/jf950360j
  8. Heinz V, Buckow R, Knorr D. 2005. Catalytic activity of betaamylase from barley in different pressure/temperature domains. Biotechnol. Prog. 21: 1632-8. https://doi.org/10.1021/bp0400137
  9. Knez Z, Laudani CG, Habulin M, Reverchon E. 2007. Exploiting the pressure effect on lipase-catalyzed wax ester synthesis in dense carbon dioxide. Biotechnology and Bioengineering 97: 1366-1375. https://doi.org/10.1002/bit.21331
  10. Kokova M, Zavrel M, Tittmann K, Spiess AC, Pohl M. Investigation of the carboligase activity of thiamine diphosphate-dependent enzymes using kinetic modeling and NMR spectroscopy. Journal of Molecular Catalysis B: Enzymatic 61: 73-79.
  11. Michels PC, Clark DS. 1997. Pressure enhanced activity and stability of a hyperthermophilic protease from a deep-sea methanogen. Appl. Environ. Microbiol. 63: 3985-3991.
  12. Mishra A, Kumar S. 2009. Kinetic studies of laccase enzyme of Coriolus versicolor MTCC 138 in an inexpensive culture medium. Biochemical Engineering Journal 46: 252-256. https://doi.org/10.1016/j.bej.2009.02.016
  13. Orruno E, Apenten RO, Zabetakis I. 2001. The role of betaglucosidase in the biosysnthesis of 2.5 dimethyl-4-hydroxy-3(H)- furanone in strawberry (Fragaria X ananassa cv.Elsanta). Flavour and Fragrance Journal 16: 81-84. https://doi.org/10.1002/1099-1026(200103/04)16:2<81::AID-FFJ947>3.0.CO;2-H
  14. Su JH, Xu JH, Lu WY, Lin GQ. 2006. Enzymatic transformation of ginsenoside Rg3 to Rh2 using newly isolated Fusarium proliferatum ECU2042. Journal of Molecular Catalysis B: Enzymatic 38: 113-118. https://doi.org/10.1016/j.molcatb.2005.12.004
  15. Zhang HY, Bao Y, An L, Jin F. 2001. Purification and characterization of ginsenoside-beta-glucosidase from ginseng. Chem. Pharm. Bull. 49: 795-798. https://doi.org/10.1248/cpb.49.795