• 제목/요약/키워드: Rayleigh's principle

검색결과 19건 처리시간 0.022초

Classical Relativistic Extension of Kanai's Frictional Lagrangian

  • Dubey, Ritesh Kumar;Singh, B.K.
    • Journal of the Korean Physical Society
    • /
    • 제73권12호
    • /
    • pp.1840-1844
    • /
    • 2018
  • Working in an arbitrary Lorentz frame, we address the question of formulating the covariant variational principle for classical, single-particle, dissipative, relativistic mechanics. First, within a Minkowskian geometry, the basic properties of the proper time ${\tau}$ and the covariant velocity $u_{\mu}$ are recapitulated. Next, using a scalar function ${\psi}(x)$ and its negative derivatives ${\varphi}_{\mu}{^{\prime}}s$, we construct a covariant Lagrangian ${\Lambda}$ that generalizes the famous Bateman-Caldirola-Kanai Lagrangian of nonrelativistic frictional mechanics. Finally, we propose a deterministic model for ${\psi}$ (involving the drag coefficient A) whose explicit solution leads to relativistic damped Rayleigh motion in the rest frame of the medium.

Parametric resonance of a spinning graphene-based composite shaft considering the gyroscopic effect

  • Neda Asadi;Hadi Arvin;Yaghoub Tadi Beni;Krzysztof Kamil Zur
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.457-471
    • /
    • 2024
  • In this research, for the first time the instability boundaries for a spinning shaft reinforced with graphene nanoplatelets undergone the principle parametric resonance are determined and examined taking into account the gyroscopic effect. In this respect, the extracted equations of motion in our previous research (Ref. Asadi et al. (2023)) are implemented and efficiently upgraded. In the upgraded discretized equations the effect of the Rayleigh's damping and the varying spinning speed is included that leads to a different dynamical discretized governing equations. The previous research was about the free vibration analysis of spinning graphene-based shafts examined by an eigen-value problem analysis; while, in the current research an advanced mechanical analysis is addressed in details for the first time that is the dynamics instability of the aforementioned shaft subjected to the principal parametric resonance. The spinning speed of the shaft is considered to be varied harmonically as a function of time. Rayleigh's damping effect is applied to the governing equations in order to regard the energy loss of the system. Resorting to Bolotin's route, Floquet theory and β-Newmark method, the instability region and its accompanied boundaries are defined. Accordingly, the effects of the graphene nanoplatelet on the instability region are elucidated.

주성분분석을 이용한 소프트웨어 개발노력 추정능력 향상 (Improving Estimation Ability of Software Development Effort Using Principle Component Analysis)

  • 이상운
    • 정보처리학회논문지D
    • /
    • 제9D권1호
    • /
    • pp.75-80
    • /
    • 2002
  • Putnam은 소프트웨어 프로젝트에 참여하는 인력이 Rayleigh 분포를 따르는 SLIM 모델을 제시하였다. 이 모델에서 인력분포를 얻기 위해서는 총 개발노력과 개발 난이도를 추정해야 한다. 프로젝트 개발에 참여할 것인지 여부를 결정하기 위해서는 소프트웨어 생명주기의 초기단계에서 이 모수들을 보다 적확히 추정하는 것이 필요하다. Putnam은 시스템 속성들 중 강한 상관관계가 있는 변량을 제거하고 나머지 변량들만으로 총 개발노력과 개발 난이도를 추정하였다. 그러나 통계적 방법에 따라 변량들이 다르게 선택되며 모델의 성능에 차이가 발생한다. 본 논문은 Putnam 방법 대신 주성분분석을 이용하여 최적의 시스템 속성을 선택하였다. 모델의 성능분석 결과 주성분분석 방법이 Putnam의 방법보다 9.85% 성능향상을 보였다. 또한, 제안된 모델은 단순하고 쉽게 구현할 수 있다.

전달행렬법을 이용하여 비틀림 각과 회전관성을 고려한 보의 진동해석 (Analysis of Vibration for the Pre-twisted Beam Considering the Effect of Rotary Inertia Using the Transfer Matrix Mathod)

  • 이정윤
    • 한국소음진동공학회논문집
    • /
    • 제26권2호
    • /
    • pp.217-224
    • /
    • 2016
  • In this study, a transfer matrix method (TMM) for a twisted uniform beam considering the effect of rotary inertia is developed, and the differential equation and the displacements and forces are derived from Hamilton's principle. The particular transfer matrix is derived by applying the distributed mass and transcendental function while using a local coordinate system. In addition, the results obtained from this method are independent for a number of subdivided elements, and this method can determine the exact solutions for the free vibration characteristics of a twisted uniform Rayleigh beam. To validate the accuracy of the proposed TMM, the computed results are compared with those reported in the existing literature, and the comparison results indicate notably good agreement. In addition, the method is used to investigate the effects of rotary inertia for a twisted beam.

Internal modals interactions analysis in terms of AFG nanorods based on Rayleigh model of nonlinear nonlocal axial behaviour

  • Somaye Jamali Shakhlavi;Shahrokh Hosseini Hashemi;Reza Nazemnezhad
    • Steel and Composite Structures
    • /
    • 제52권5호
    • /
    • pp.557-569
    • /
    • 2024
  • Nonlinear internal modals interactions analysis of axially functionally graded nanorods is evaluated on the basis of nonlocal elasticity theory and Rayleigh beam model for the first time. Functionally graded materials can be determined as nonhomogeneous composites which are obtained by combining of two various materials in order to get a new ideal material. In this research, material properties of nanorods are supposed to be calmly varied along the axial direction. Hamilton's principle is used to derive the equations with consideration of Von-Kármán's geometrically nonlinearity. Harmonic Differential Quadrature (HDQ) and Multiple Scale (MS) solution techniques are used to derive an approximate-analytic solution to the linear and nonlinear free axial vibration problem of non-classical nanorods for clamped-clamped and clamped-free boundary conditions. A parametric study is carried out to indicate the effects of index of AFG, aspect ratio, mode number, internal resonances and nonlinear amplitude on nonlinear nonlocal frequencies of axially functionally graded nanorods. Also, the effects of nonlocal and nonlinear coefficients and AFG index on relationships of internal resonances have been investigated. The presented theatrical-semi analytical model has the ability to predict very suitable results for extracting the internal modal interactions in the AFG nanorod.

Curved taper leaf spring의 동특성에 관한 연구 (A study on the dynamic characteristics of curved taper leaf spring)

  • 김찬묵;김광식
    • 오토저널
    • /
    • 제3권1호
    • /
    • pp.38-45
    • /
    • 1981
  • In this paper, the natural frequencies of curved taper leaf springs using on vehicle suspension systems are studied. By applying the Castigliano's definition, Rayleigh's principle and Dunkerley's equation, new formulas defining the natural frequency of such shaped spring are derived. Numerical calculations are in very good agreement with experimental results on actual models. We found that the natural frequencies of curved taper spring are increased by 21-28% compared with the spring having same weight, span and curve but uniform section.

  • PDF

회전축을 따라 이동하는 강체의 동해석 (Dynamic Analysis of a Rigid Body Traveling on the Rotating Shaft)

  • 박용석;홍성철
    • 한국산학기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.435-442
    • /
    • 2010
  • 이동하중을 받는 구조물의 동적 거동은 이동물체의 속도에 따라 정하중을 받을때 보다 큰 처짐을 나타내게 되어 구조물의 설계에 중요한 영향을 미치게 된다. 기계가공이나 볼스크류우를 이용한 위치제어분야에서 개선 및 성능 유지를 위한 해석의 기법이 요구되고 있다. 회전하는 티모센코축을 따라 이동하는 두 개의 이동하중을 받는 시스템에 대한 운동방정식이 Hamilton의 원리로 유도되었다. 무차원화된 속도비, 질량비, Rayleigh 계수비의 영향이 시스템의 응답에 미치는 영향을 해석하였다.

2개의 유연한 링크를 갖는 매니퓰레이터의 설계 및 제어 (Design and control of two-link flexible manipulators)

  • 정주노;정완균;염영일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.383-386
    • /
    • 1996
  • In this paper, we propose a design method and control law for plannar type two-link flexible manipulator. In designing flexible links, we use Rayleigh's principle. To control flexible manipulator, input distribution controller is used, which is primarily on the basis of nonlinear variable structure control(VSC). The simulation results are also shown.

  • PDF

Size dependent axial free and forced vibration of carbon nanotube via different rod models

  • Khosravi, Farshad;Simyari, Mahdi;Hosseini, Seyed A.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.157-172
    • /
    • 2020
  • The aim of this present research is the effect of the higher-order terms of the governing equation on the forced longitudinal vibration of a nanorod model and making comparisons of the results with classical nonlocal elasticity theory. For this purpose, the free axial vibration along with forced one under the two various linear and harmonic axial concentrated forces in zigzag Single-Walled Carbon Nanotube (SWCNT) are analyzed dynamically. Three various theories containing the classical theory, which is called Eringen's nonlocal elasticity, along with Rayleigh and Bishop theories (higher-order theories) are established to justify the nonlocal behavior of constitutive relations. The governing equation and the related boundary conditions are derived from Hamilton's principle. The assumed modes method is adopted to solve the equation of motion. For the free axial vibration, the natural frequencies are calculated for the various values of the nonlocal parameter only based on Eringen's theory. The effects of the nonlocal parameter, thickness, length, and ratio of the excitation frequency to the natural frequency over time in dimensional and non-dimensional axial displacements are investigated for the first time.

Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods

  • Ghannadpour, S.A.M.;Shakeri, M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • 제29권6호
    • /
    • pp.785-802
    • /
    • 2018
  • In this paper, two different computational methods, called Rayleigh-Ritz and collocation are developed to estimate the ultimate strength of composite plates. Progressive damage behavior of moderately thick composite laminated plates is studied under in-plane compressive load and uniform lateral pressure. The formulations of both methods are based on the concept of the principle of minimum potential energy. First order shear deformation theory and the assumption of large deflections are used to develop the equilibrium equations of laminated plates. Therefore, Newton-Raphson technique will be used to solve the obtained system of nonlinear algebraic equations. In Rayleigh-Ritz method, two degradation models called complete and region degradation models are used to estimate the degradation zone around the failure location. In the second method, a new energy based collocation technique is introduced in which the domain of the plate is discretized into the Legendre-Gauss-Lobatto points. In this new method, in addition to the two previous models, the new model named node degradation model will also be used in which the material properties of the area just around the failed node are reduced. To predict the failure location, Hashin failure criteria have been used and the corresponding material properties of the failed zone are reduced instantaneously. Approximation of the displacement fields is performed by suitable harmonic functions in the Rayleigh-Ritz method and by Legendre basis functions (LBFs) in the second method. Finally, the results will be calculated and discussions will be conducted on the methods.