Browse > Article
http://dx.doi.org/10.3938/jkps.73.1840

Classical Relativistic Extension of Kanai's Frictional Lagrangian  

Dubey, Ritesh Kumar (Department of Physics, Banaras Hindu University)
Singh, B.K. (Department of Physics, Banaras Hindu University)
Abstract
Working in an arbitrary Lorentz frame, we address the question of formulating the covariant variational principle for classical, single-particle, dissipative, relativistic mechanics. First, within a Minkowskian geometry, the basic properties of the proper time ${\tau}$ and the covariant velocity $u_{\mu}$ are recapitulated. Next, using a scalar function ${\psi}(x)$ and its negative derivatives ${\varphi}_{\mu}{^{\prime}}s$, we construct a covariant Lagrangian ${\Lambda}$ that generalizes the famous Bateman-Caldirola-Kanai Lagrangian of nonrelativistic frictional mechanics. Finally, we propose a deterministic model for ${\psi}$ (involving the drag coefficient A) whose explicit solution leads to relativistic damped Rayleigh motion in the rest frame of the medium.
Keywords
Relativistic dynamics; Variational principle; Kanai Lagrangian; Drag coefficient; Rayleigh motion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Goldstein, Classical Mechanics (Addison-Wesley/Narosa, New Delhi, 1985).
2 H. C. Corben and P. Stehle, Classical Mechanics (Wiley, New York, 1960).
3 K. Kanai, Prog. Theor. Phys. 3, 440 (1948).   DOI
4 R. W. Hasse, Rep. Prog. Phys. 41, 1027 (1978).   DOI
5 Yu. O. Budaev and A. G. Karavaev, Russian Phys. Journal 38, 85 (1995).
6 V. J. Menon, N. Chanana and Y. Singh, Prog. Theor. Phys. 98, 321 (1997).   DOI
7 J. Aharoni, Special Theory of Relativity (Oxford University Press, Oxford, 1959).
8 N. A. Doughty, Lagrangain Interaction (Addison-Wesley, Reading, MA, 1990).
9 Y. Sea Huang, Am. J. Phys. 67, 142 (1999).   DOI
10 O. D. Johns, Am. J. Phys. 53, 982 (1985).   DOI
11 H. Stephani, General Relativity (Cambridge University Press, London, 1985).
12 G. Gonzalez, Relativistic motion with linear dissipation, arXiv:quant-ph/0503211.