• 제목/요약/키워드: Ratio-of-uniform method

검색결과 399건 처리시간 0.023초

Post-buckling finite strip analysis of thick functionally graded plates

  • Hajikazemi, M.;Ovesy, H.R.;Assaee, H.;Sadr, M.H.
    • Structural Engineering and Mechanics
    • /
    • 제49권5호
    • /
    • pp.569-595
    • /
    • 2014
  • In this paper, a novel semi-energy finite strip method (FSM) is developed based on the concept of first order shear deformation theory (FSDT) in order to attempt the post-buckling solution for thin and relatively thick functionally graded (FG) plates under uniform end-shortening. In order to study the effects of through-the-thickness shear stresses on the post-buckling behavior of FG plates, two previously developed finite strip methods, i.e., semi-energy FSM based on the concept of classical laminated plate theory (CLPT) and a CLPT full-energy FSM, are also implemented. Moreover, the effects of aspect ratio on initial post-buckling stiffness of FG rectangular plates are studied. It has been shown that the variation of the ratio of initial post-buckling stiffness to pre-buckling stiffness ($S^*/S$) with respect to aspects ratios is quite independent of volume fractions of constituents in thin FG plates. It has also been seen that the universal curve representing the variation of ($S^*/S$) with aspect ratio of a FG plate demonstrate a saw shape curve. Moreover, it is revealed that for the thin FG plates in contrast to relatively thick plates, the variations of non-dimensional load versus end-shortening is independent of ceramic-metal volume fraction index. This means that the post-buckling behavior of thin FG plates and the thin pure isotropic plates is similar. The results are discussed in detail and compared with those obtained from finite element method (FEM) of analysis. The study of the results may have a great influence in design of FG plates encountering post-buckling behavior.

Hierarchically porous carbon aerogels with high specific surface area prepared from ionic liquids via salt templating method

  • Zhang, Zhen;Feng, Junzong;Jiang, Yonggang;Feng, Jian
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.47-54
    • /
    • 2018
  • High surface carbon aerogels with hierarchical and tunable pore structure were prepared using ionic liquid as carbon precursor via a simple salt templating method. The as-prepared carbon aerogels were characterized by nitrogen sorption measurement and scanning electron microscopy. Through instant visual observation experiments, it was found that salt eutectics not only serve as solvents, porogens, and templates, but also play an important role of foaming agents in the preparation of carbon aerogels. When the pyrolyzing temperature rises from 800 to $1000^{\circ}C$, the higher temperature deepens the carbonization reaction further to form a nanoporous interconnected fractal structure and increase the contribution of super-micropores and small mesopores and improve the specific surface area and pore volume, while having few effects on the macropores. As the mass ratio of ionic liquid to salt eutectics drops from 55% to 15%, that is, the content of salt eutectics increases, the salt eutectics gradually aggregate from ion pairs, to clusters with minimal free energy, and finally to a continuous salt phase, leading to the formation of micropores, uniform mesopores, and macropores, respectively; these processes cause BET specific surface area initially to increase but subsequently to decrease. With the mass ratio of ionic liquids to salts at 35% and carbonization temperature at $900^{\circ}C$, the specific surface area of the resultant carbon aerogels reached $2309m^2g^{-1}$. By controlling the carbonization temperature and mass ratio of the raw materials, the hierarchically porous architecture of carbon aerogels can be tuned; this advantage will promote their use in the fields of electrodes and adsorption.

임의분포 사하중에 정적변위를 갖는 변단면 보의 자유진동 (Free Vibrations of Arbitrary Tapered Beams with Static Deflections due to Arbitrary Distributed Dead Loads)

  • 이병구;이용
    • 한국농공학회지
    • /
    • 제38권3호
    • /
    • pp.50-57
    • /
    • 1996
  • A numerical method is presented to obtain the natural frequencies and mode shapes of the arbitrary tapered beams with static deflection due to arbitrary distributed dead loads. The differential equation governing free vibration of such beams is derived and solved numerically. The double integration method using the trapezoidal rule is used to solve the static behaviour of beams loaded arbitrary distributed dead load. Also, the Improved Euler method and the determinant search method are used to integrate the differential equation subjected to the boundary conditions and to determine the natural frequencies of the beams, respectively. In the numerical examples, the various geometries of the beams are considered : (1) linearly tapered beams as the arbitrary variable cross-section, (2) the triangular, sinusoidal and uniform loads as the arbitrary distributed dead loads and (3) the hinged-hinged, clamped-clamped and hinged-clamped ends as the end constraints. All numerical results are shown as the non-dimensional forms of the system parameters. The lowest three natural frequencies versus load parameter, slenderness ratio and section ratio are reported in figures. And for the comparison purpose, the typical mode shapes with and without the effects of static deflection are presented in the figure. According to the numerical results obtained in this analysis, the following conclusions may be drawn : (1) the natural frequencies increase when the effects of static deflections are included, (2) the effects are larger at the lower modes than the higher ones and (3) it should be betteF to include the effect of static deflection for calculating the frequencies when the beams are supported by both hinged ends or one hinged end.

  • PDF

Weight and topology optimization of outrigger-braced tall steel structures subjected to the wind loading using GA

  • Nouri, Farshid;Ashtari, Payam
    • Wind and Structures
    • /
    • 제20권4호
    • /
    • pp.489-508
    • /
    • 2015
  • In this paper, a novel methodology is proposed to obtain optimum location of outriggers. The method utilizes genetic algorithm (GA) for shape and size optimization of outrigger-braced tall structures. In spite of previous studies (simplified methods), current study is based on exact modeling of the structure in a computer program developed on Matlab in conjunction with OpenSees. In addition to that, exact wind loading distribution is calculated in accordance with ASCE 7-10. This is novel since in previous studies wind loading distributions were assumed to be uniform or triangular. Also, a new penalty coefficient is proposed which is suitable for optimization of tall buildings. Newly proposed penalty coefficient improves the performance of GA and results in a faster convergence. Optimum location and number of outriggers is investigated. Also, contribution of factors like central core and outrigger rigidity is assessed by analyzing several design examples. According to the results of analysis, exact wind load distribution and modeling of all structural elements, yields optimum designs which are in contrast of simplified methods results. For taller frames significant increase of wind pressure changes the optimum location of outriggers obtained by simplified methods. Ratio of optimum location to the height of the structure for minimizing weight and satisfying serviceability constraints is not a fixed value. Ratio highly depends on height of the structure, core and outriggers stiffness and lateral wind loading distribution.

원추형 다이를 이용한 Cu-Al 층상 복합재료의 직접압출 (The Direct Extrusion of Copper Clad Aluminum Composite Materials by Using the Conical Dies)

  • 윤여권;김희남
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1541-1550
    • /
    • 2001
  • This paper describes experimental investigations in the direct extrusion of copper clad aluminum rods through conical dies. Composite materials consist of two or more different material layers. Copper clad aluminum composite materials are being used fur economic and structural purposes and the development of an efficient production method of copper clad aluminum composite material rods by extrusion is very important, It is necessary to know the conditions in which successful uniform extrusion ,and sound cladding may be carried out without any defects in the direct extrusion. There are several variables that have an influence on determining a sound clad extrusion. In order to investigate the influence of these parameters on the hot direct extrudability of the copper clad aluminum composite material rods, the experimental study have been performed with various extrusion temperatures, extrusion ratios and semi-cone angles of die. Subsequently, the microscopic inspection of interface bonding is carried out for extruded products. By measuring hardness, along extrusion way of products, a variation of hardness has been discussed. Proportional flow state has been considered by measuring radius ratio of Cu sleeve and Al core before and after extrusion.

Large amplitude free vibrations of FGM shallow curved tubes in thermal environment

  • Babaei, Hadi;Kiani, Yaser;Eslami, M. Reza
    • Smart Structures and Systems
    • /
    • 제25권6호
    • /
    • pp.693-705
    • /
    • 2020
  • In the current investigation, large amplitude free vibration behavior of shallow curved pipes (tubes) made of functionally graded materials is investigated. Properties of the tube are distributed across the radius of the tube and are obtained by means of a power law function. It is also assumed that all thermo-mechanical properties are temperature dependent. The governing equations of the tube are obtained using a higher order shear deformation tube theory, where the traction free boundary conditions are satisfied on the top and bottom surfaces of the tube. The von Kármán type of geometrical non-linearity is included into the formulation to consider the large displacements and small strains. Uniform temperature elevation of the tube is also included into the formulation. For the case of tubes which are simply supported in flexure and axially immovable, the governing equations are solved using the two-step perturbation technique. Closed form expressions are provided to obtain the small and large amplitude fundamental natural frequencies of the FGM shallow curved tubes in thermal environment. Numerical results are given to explore the effects of thermal environment, radius ratio, and length to thickness ratio of the tube on the fundamental linear and non-linear frequencies.

대전입자형 디스플레이 소자의 점유면적 평가방법에 의한 구동특성 및 메모리 효과 분석 (Analysis of Driving Characteristics and Memory Effect by Occupation Area Evaluation Method of Charged Particle Type Display Device)

  • 김진선;김영조
    • 한국전기전자재료학회논문지
    • /
    • 제24권8호
    • /
    • pp.669-673
    • /
    • 2011
  • The charged particle type display is a kind of the reflectivity type display and shows an image by absorption and reflection of external light source, which has keep an image without additional electric power because of bistability. In this paper, we made a device whose cell gap is $56\;{\mu}m$ and also analyzed driving and memory characteristics by applied driving voltages. As a result, we found that the driving voltage and memory effect depend on q/m(charge to mass ratio) of charged particle. In this case of breakdown voltage, the devices showed degradation of reflectivity and memory effect due to irregular movement of overcharged particles. In addition, contrast ratio of the device varies with memory effect. Thus, we consider that device needs uniform q/m for improvement of electric and optical properties and memory effect.

Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams

  • Ebrahimi, Farzad;Farazmandnia, Navid
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.149-159
    • /
    • 2018
  • Thermo-mechanical buckling of sandwich beams with a stiff core and face sheets made of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) within the framework of Timoshenko beam theory is presented. The material properties of FG-CNTRC are supposed to vary continuously in the thickness direction and are estimated through the rule of mixture. Also the properties of these materials should be considered temperature dependent. The governing equations and boundary conditions are derived by using Hamilton's principle and solved using an efficient technique called the Differential Transform Method (DTM) to achieve the critical buckling of the sandwich beam in uniform thermal environment. A detailed parametric study is guided to investigate the effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, and clamped-clamped, simply-simply and clamped-simply end supports on the critical buckling behavior of sandwich beams with FG-CNTRC face sheets. Numerical results for comparison of sandwich beams with uniformly distributed carbon nanotube-reinforced composite (UD-CNTRC) face sheets with those with FG-CNTRC face sheets are also presented.

Electro-responsive Transdermal Drug Release of MWCNT/PVA Nanocomposite Hydrogels

  • Kim, Yeon-Yi;Yun, Ju-Mi;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • 제11권3호
    • /
    • pp.211-215
    • /
    • 2010
  • Multi-walled carbon nanotube (MWCNT)/poly(vinyl alcohol) (PVA) nanocomposite hydrogels were prepared by freezingthawing method for the electro-responsive transdermal drug delivery. MWCNTs were used as the functional ingredient to improve both mechanical and electrical properties of MWCNT/PVA nanocomposite hydrogels. The morphology of nanocomposites revealed the uniform distribution of MWCNTs and the good interfacial contact. The compression moduli of hydrogel matrices increased greatly from 40 to 1500 kPa by forming MWCNT/PVA nanocomposites. The swelling ratio of MWCNT/PVA nanocomposites decreased as the content of MWCNTs increased under no electric voltage applied. However, the swelling ratio of MWCNT/PVA nanocomposites increased as the content of MWCNTs increased under electric voltage applied and the applied electric voltage increased. The drug was released in the electro-responsive manner through the skin due to the electro-sensitive swelling characteristics of MWCNT/PVA nanocomposite hydrogels.

반응고 A356 합금의 재가열 특성 및 반용융 압출 (Thixo Extrusion and Reheating Characteristics of Semi Solid A356 Alloy)

  • 김대환;정현주;심성용;임수근;이상용
    • 한국주조공학회지
    • /
    • 제34권4호
    • /
    • pp.123-129
    • /
    • 2014
  • This work presents the results of a thixo-extrusion process applied to aluminum alloy and and reheating characteristics of semi-solid A356 Alloy using have been discussed. The reheating experiment was performed using an electric resistance furnace and multi-stage heating for uniform reheating. The thixo-extrusion was performed at the optimal reheating conditions of the semi-solid A356 alloy, the the extrusion conditions were an extrusion ratio of 33 and ram speed of 6 mm/sec. The results showed that the thixo-extrusion of semi-solid A356 alloy fabricated by the cooling slope reduced the extrusion pressure by 180% in comparison with hot extrusion, and that a sound extrusion could be obtained in spite of the same extrusion ratio and strain rate.