Hierarchically porous carbon aerogels with high specific surface area prepared from ionic liquids via salt templating method |
Zhang, Zhen
(Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology)
Feng, Junzong (Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology) Jiang, Yonggang (Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology) Feng, Jian (Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology) |
1 | Ren RP, Li W, Lv YK. A robust, superhydrophobic graphene aerogel as a recyclable sorbent for oils and organic solvents at various temperatures. J Colloid Interface Sci, 500, 63 (2017). https://doi.org/10.1016/j.jcis.2017.01.071. DOI |
2 | Li J, Lei Y, Xu D, Liu F, Li J, Sun A, Guo J, Xu G. Improved mechanical and thermal insulation properties of monolithic attapulgite nanofiber/silica aerogel composites dried at ambient pressure. J Sol-Gel Sci Technol, 82, 702 (2017). https://doi.org/10.1007/s10971-017-4359-2. DOI |
3 | Cuce E, Cuce PM, Wood CJ, Riffat SB. Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renewable Sustainable Energy Rev, 34, 273 (2014). https://doi.org/10.1016/j.rser.2014.03.017. DOI |
4 | Amonette JE. Matyas J. Functionalized silica aerogels for gasphase purification, sensing, and catalysis: a review. Microporous Mesoporous Mater, 250, 100 (2017). https://doi.org/10.1016/j.micromeso.2017.04.055. DOI |
5 | Maleki H. Recent advances in aerogels for environmental remediation applications: a review. Chem Eng J, 300, 98 (2016). https://doi.org/10.1016/j.cej.2016.04.098. DOI |
6 | Liu N, Shen J, Liu D. Activated high specific surface area carbon aerogels for EDLCs. Microporous Mesoporous Mater, 167, 176 (2013). https://doi.org/10.1016/j.micromeso.2012.09.009. DOI |
7 | Araby S, Qiu A, Wang R, Zhao Z, Wang C, Ma J. Aerogels based on carbon nanomaterials. J Mater Sci, 51, 9157 (2016). https://doi.org/10.1007/s10853-016-0141-z. DOI |
8 | Feng J, Feng J, Jiang Y, Zhang C. Ultralow density carbon aerogels with low thermal conductivity up to . Mater Lett, 65, 3454 (2011). https://doi.org/10.1016/j.matlet.2011.07.114. DOI |
9 | Macias C, Rasines G, Lavela P, Zafra M, Tirado JL, Ania CO. Mncontaining N-doped monolithic carbon aerogels with enhanced macroporosity as electrodes for capacitive deionization. ACS Sustain Chem Eng, 4, 2487 (2016). https://doi.org/10.1021/acssuschemeng.5b01444. DOI |
10 | Horikawa T, Hayashi J, Muroyama K. Controllability of pore characteristics of resorcinol-formaldehyde carbon aerogel. Carbon, 42, 1625 (2004). https://doi.org/10.1016/j.carbon.2004.02.016. DOI |
11 | Feng J, Feng J, Zhang C. Shrinkage and pore structure in preparation of carbon aerogels. J Sol-Gel Sci Technol, 59, 371 (2011). https://doi.org/10.1007/s10971-011-2514-8. DOI |
12 | Lu AH, Li WC, Schmidt W, Schuth F. Fabrication of hierarchically structured carbon monoliths via self-binding and salt templating. Microporous Mesoporous Mater, 95,187 (2006). https://doi.org/10.1016/j.micromeso.2006.05.024. DOI |
13 | Paraknowitsch JP, Zhang J, Su D, Thomas A, Antonietti M. Ionic liquids as precursors for nitrogen-doped graphitic carbon. Adv Mater, 22, 87 (2010). https://doi.org/10.1002/adma.200900965. DOI |
14 | Fechler N, Fellinger TP, Antonietti M. "Salt Templating": a simple and sustainable pathway toward highly porous functional carbons from ionic liquids. Adv Mater, 25, 75 (2013). https://doi.org/10.1002/adma.201203422. DOI |
15 | Elumeeva K, Fechler N, Fellinger TP, Antonietti M. Metal-free ionic liquid-derived electrocatalyst for high-performance oxygen reduction in acidic and alkaline electrolytes. Mater Horiz, 1, 588 (2014). https://doi.org/10.1039/c4mh00123k. DOI |
16 | Yang SJ, Rothe R, Kirchhecker S, Esposito D, Antonietti M, Gojzewski H, Fechler N. A sustainable synthesis alternative for IL-derived N-doped carbons: bio-based-imidazolium compounds. Carbon, 94, 641 (2015). https://doi.org/10.1016/j.carbon.2015.07.034. DOI |
17 | Robertson C, Mokaya R. Microporous activated carbon aerogels via a simple subcritical drying route for capture and hydrogen storage. Microporous Mesoporous Mater, 179, 151 (2013). https://doi.org/10.1016/j.micromeso.2013.05.025. DOI |
18 | Elumeeva K, Ren J, Antonietti M, Fellinger TP. High surface iron/cobalt-containing nitrogen-doped carbon aerogels as non-precious advanced electrocatalysts for oxygen reduction. ChemElectroChem, 2, 584 (2015). https://doi.org/10.1002/celc.201402364. DOI |
19 | Yu ZL, Li GC, Fechler N, Yang N, Ma ZY, Wang X, Antonietti M, Yu SH. Polymerization under hypersaline conditions: a robust route to phenolic polymer-derived carbon aerogels. Angew Chem Int Ed, 55, 14623 (2016). https://doi.org/10.1002/anie.201605510. DOI |
20 | Sun G, Su F, Xie L, Guo X, Chen C. Synthesis of mesoporous carbon aerogels based on metal-containing ionic liquid and its application for electrochemical capacitors. J Solid State Electrochem, 20, 1813 (2016). https://doi.org/10.1007/s10008-016-3170-2. DOI |
21 | Gregg S, Sing K. Academic Press, London, (1982). |
22 | Mascotto S, Kuzmicz D, Wallacher D, M Siebenbürger, Clemens D, Risse S, Yuan J, Antonietti M, Ballauff M. Poly(ionic liquid)-derived nanoporous carbon analyzed by combination of gas physisorption and small-angle neutron scattering. Carbon, 82, 425 (2015). https://doi.org/10.1016/j.carbon.2014.10.086. DOI |
23 | Romero-Serrano A, Hernandez-Ramirez A, Cruz-Ramirez A, Hallen-Lopez M, Zeifert B. Optimization and calculation of the MCl- (M=Li, Na, K) phase diagrams. Thermochimica Acta, 510, 88 (2010). https://doi.org/10.1016/j.tca.2010.06.027. DOI |