Browse > Article
http://dx.doi.org/10.12989/scs.2018.27.2.149

Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams  

Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
Farazmandnia, Navid (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
Publication Information
Steel and Composite Structures / v.27, no.2, 2018 , pp. 149-159 More about this Journal
Abstract
Thermo-mechanical buckling of sandwich beams with a stiff core and face sheets made of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) within the framework of Timoshenko beam theory is presented. The material properties of FG-CNTRC are supposed to vary continuously in the thickness direction and are estimated through the rule of mixture. Also the properties of these materials should be considered temperature dependent. The governing equations and boundary conditions are derived by using Hamilton's principle and solved using an efficient technique called the Differential Transform Method (DTM) to achieve the critical buckling of the sandwich beam in uniform thermal environment. A detailed parametric study is guided to investigate the effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, and clamped-clamped, simply-simply and clamped-simply end supports on the critical buckling behavior of sandwich beams with FG-CNTRC face sheets. Numerical results for comparison of sandwich beams with uniformly distributed carbon nanotube-reinforced composite (UD-CNTRC) face sheets with those with FG-CNTRC face sheets are also presented.
Keywords
buckling analysis; sandwich beam; FG-CNTRC; thermal environment;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ebrahimi, F. and Barati, M.R. (2016l), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 39(3), 937-952.
2 Ebrahimi, F. and Barati, M.R. (2016m), "Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams", Eur. Phys. J. Plus, 131(7), 1-14.   DOI
3 Ebrahimi, F. and Barati, M.R. (2016n), "Buckling analysis of smart size-dependent higher order magneto-electro-thermoelastic functionally graded nanosize beams", J. Mech., 33(1), 23-33.
4 Ebrahimi, F. and Barati, M.R. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182.   DOI
5 Ebrahimi, F. and Dabbagh, A. (2016), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293.
6 Ebrahimi, F. and Hosseini, S.H.S. (2016a), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625.   DOI
7 Ebrahimi, F. and Hosseini, S.H.S. (2016b), "Double nanoplatebased NEMS under hydrostatic and electrostatic actuations", Eur. Phys. J. Plus, 131(5), 1-19.   DOI
8 Ebrahimi, F. and Salari, E. (2015a), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380.   DOI
9 Ebrahimi, F. and Salari, E. (2015b), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B: Eng., 79, 156-169.   DOI
10 Ebrahimi, F. and Salari, E. (2015c), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronautica, 113, 29-50.   DOI
11 Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015a), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Technol., 29(3), 1207-1215.   DOI
12 Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015b), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and nonlinear temperature distributions", J. Therm. Stress., 38(12), 1360-1386.   DOI
13 Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182.   DOI
14 Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Computat. Mater. Sci., 39(2), 315-323.   DOI
15 Hassan, I.A.-H. (2002), "On solving some eigenvalue problems by using a differential transformation", Appl. Math. Computat., 127(1), 1-22.   DOI
16 Pradhan, S. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321(1), 342-362.   DOI
17 Ju, S.-P. (2004), "Application of differential transformation to transient advective-dispersive transport equation", Appl. Math. Computat., 155(1), 25-38.   DOI
18 Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92(3), 676-683.   DOI
19 Ke, L.L., Yang, J. and Kitipornchai, S. (2013), "Dynamic stability of functionally graded carbon nanotube-reinforced composite beams", Mech. Adv. Mater. Struct., 20(1), 28-37.   DOI
20 Malik, M. and Dang, H.H. (1998), "Vibration analysis of continuous systems by differential transformation", Appl. Math. Computat., 96(1), 17-26.   DOI
21 Qian, D., Dickey, E.C., Andrews, R. and Rantell, T. (2000), "Load transfer and deformation mechanisms in carbon nanotubepolystyrene composites", Appl. Phys. Lett., 76(20), 2868-2870.   DOI
22 Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70.   DOI
23 Seidel, G.D. and Lagoudas, D.C. (2006), "Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites", Mech. Mater., 38(8), 884-907.   DOI
24 Shen, H.-S. (2004), "Thermal postbuckling behavior of functionally graded cylindrical shells with temperaturedependent properties", Int. J. Solids Struct., 41(7), 1961-1974.   DOI
25 Wang, Z.-X. and Shen, H.-S. (2011), "Nonlinear vibration of nanotube-reinforced composite plates in thermal environments", Computat. Mater. Sci., 50(8), 2319-2330.   DOI
26 Shen, H.-S. (2011), "Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part II: Pressure-loaded shells", Compos. Struct., 93(10), 2496-2503.   DOI
27 Shen, H.-S. and Zhu, Z. (2012), "Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations", Eur. J. Mech.-A/Solids, 35, 10-21.   DOI
28 Tauchert, T.R. (1974), Energy Principles in Structural Mechanics, McGraw-Hill Companies.
29 Xu, Y., Ray, G. and Abdel-Magid, B. (2006), "Thermal behavior of single-walled carbon nanotube polymer-matrix composites", Compos. Part A: Appl. Sci. Manuf., 37(1), 114-121.   DOI
30 Wu, H., Kitipornchai, S. and Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", Int. J. Struct. Stabil. Dyn., 15(7), 1540011.   DOI
31 Yang, J. and Xiang, H. (2007), "Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators", Smart Mater. Struct., 16(3), 784.   DOI
32 Yang, J., Ke, L.L. and Feng, C. (2015), "Dynamic buckling of thermo-electro-mechanically loaded FG-CNTRC beams", Int. J. Struct. Stabil. Dyn., 15(8), 1540017.   DOI
33 Zenkour, A. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93-102.   DOI
34 Ebrahimi, F. and Barati, M.R. (2016a), "Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory", Int. J. Smart Nano Mater., 7(3), 119-143.   DOI
35 Ajayan, P.M., Stephan, O., Colliex, C. and Trauth, D. (1994), "Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite", Science, 265(5176), 1212-1214.   DOI
36 Ashrafi, B. and Hubert, P. (2006), "Modeling the elastic properties of carbon nanotube array/polymer composites", Compos. Sci. Technol., 66(3), 387-396.   DOI
37 Duan, K., Li, L., Hu, Y. and Wang, X. (2017), "Enhanced interfacial strength of carbon nanotube/copper nanocomposites via Ni-coating: Molecular-dynamics insights", Physica E: Low-Dimens. Syst. Nanostruct., 88, 259-264.   DOI
38 Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 1077546316646239.   DOI
39 Ebrahimi, F. and Barati, M.R. (2016c), "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122(10), 910.   DOI
40 Zhang, C.-L. and Shen, H.-S. (2006), "Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation", Appl. Phys. Lett., 89(8), 081904.   DOI
41 Ebrahimi, F. and Barati, M.R. (2016d), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014.   DOI
42 Ebrahimi, F. and Barati, M.R. (2016e), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intel. Mater. Syst. Struct., 28(11), 1472-1490.
43 Ebrahimi, F. and Barati, M.R. (2016f), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J. Sci. Eng, 41(5), 1679-1690.   DOI
44 Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279.   DOI
45 Ebrahimi, F. and Barati, M.R. (2016h), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
46 Ebrahimi, F. and Barati, M.R. (2016i), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792.   DOI
47 Ebrahimi, F. and Barati, M.R. (2016j), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196.   DOI
48 Ebrahimi, F. and Barati, M.R. (2016k), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444.