• 제목/요약/키워드: Rapid thermal annealing process

검색결과 204건 처리시간 0.02초

나노급 수소화된 비정질 실리콘층 두께에 따른 저온형성 니켈실리사이드의 물성 연구 (Property of Nickel Silicides with Hydrogenated Amorphous Silicon Thickness Prepared by Low Temperature Process)

  • 김종률;최용윤;박종성;송오성
    • 대한금속재료학회지
    • /
    • 제46권11호
    • /
    • pp.762-769
    • /
    • 2008
  • Hydrogenated amorphous silicon(a-Si : H) layers, 120 nm and 50 nm in thickness, were deposited on 200 $nm-SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by E-beam evaporation. Finally, 30 nm-Ni/120 nm a-Si : H/200 $nm-SiO_2$/single-Si and 30 nm-Ni/50 nm a-Si:H/200 $nm-SiO_2$/single-Si were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 30 minute. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide on the 120 nm a-Si:H substrate showed high sheet resistance($470{\Omega}/{\Box}$) at T(temperature) < $450^{\circ}C$ and low sheet resistance ($70{\Omega}/{\Box}$) at T > $450^{\circ}C$. The high and low resistive regions contained ${\zeta}-Ni_2Si$ and NiSi, respectively. In case of microstructure showed mixed phase of nickel silicide and a-Si:H on the residual a-Si:H layer at T < $450^{\circ}C$ but no mixed phase and a residual a-Si:H layer at T > $450^{\circ}C$. The surface roughness matched the phase transformation according to the silicidation temperature. The nickel silicide on the 50 nm a-Si:H substrate had high sheet resistance(${\sim}1k{\Omega}/{\Box}$) at T < $400^{\circ}C$ and low sheet resistance ($100{\Omega}/{\Box}$) at T > $400^{\circ}C$. This was attributed to the formation of ${\delta}-Ni_2Si$ at T > $400^{\circ}C$ regardless of the siliciation temperature. An examination of the microstructure showed a region of nickel silicide at T < $400^{\circ}C$ that consisted of a mixed phase of nickel silicide and a-Si:H without a residual a-Si:H layer. The region at T > $400^{\circ}C$ showed crystalline nickel silicide without a mixed phase. The surface roughness remained constant regardless of the silicidation temperature. Our results suggest that a 50 nm a-Si:H nickel silicide layer is advantageous of the active layer of a thin film transistor(TFT) when applying a nano-thick layer with a constant sheet resistance, surface roughness, and ${\delta}-Ni_2Si$ temperatures > $400^{\circ}C$.

ULSI급 CMOS 소자 특성 분석을 위한 몬테 카를로 이온 주입 공정 시뮬레이션시의 효율적인 가상 이온 발생법 (Computationally Efficient ion-Splitting Method for Monte Carlo ion Implantation Simulation for the Analysis of ULSI CMOS Characteristics)

  • 손명식;이진구
    • 대한전자공학회논문지SD
    • /
    • 제38권11호
    • /
    • pp.771-780
    • /
    • 2001
  • ULSI급 CMOS 소자를 개발, 제작하고 또한 그것의 전기적 특성을 정확히 분석하기 위해서는 공정 및 소자 시뮬레이터의 사용이 필수적이다. 대면적 몬테 카를로 시뮬레이션 결과가 다차원 소자 시뮬레이터의 입력으로 사용되려면 과도한 입자수의 증가로 비효율성을 띄게 된다. 본 논문에서는 이러한 문제를 해결하기 위해 3차원 몬테 카를로 이온 주입 시뮬레이터인 TRICSI 코드를 이용하여 물리적으로 타당하며 또한 효율적으로 시뮬레이션 입자 수를 증가시켜 대면적 이온 주입시의 3차원 통계 분포의 잡음 영역을 최소화하는 방법을 제안하였다. 후속 공정인 열확산 공정이나 RTA(급속 열처리) 공정의 확산 방정식을 푸는 경우 발산을 막기 위해 몬테 카를로 시뮬레이션 결과의 통계 분포에 대한 후처리 과정으로 3차원 셀을 이용한 보간 알고리듬을 적용하였다. 시뮬레이션 수행 결과 가상 궤적 발생법(split-trajectory method)만을 사용한 것에 비해 계산 시간은 2배로 늘이지 않는 범위에서 10배 이상의 이온 입자 생성 분포를 얻을 수 있다.

  • PDF

In-situ Observations of Gas Phase Dynamics During Graphene Growth Using Solid-State Carbon Sources

  • Kwon, Tae-Yang;Kwak, Jinsung;Chu, Jae Hwan;Choi, Jae-Kyung;Lee, Mi-Sun;Kim, Sung Youb;Shin, Hyung-Joon;Park, Kibog;Park, Jang-Ung;Kwon, Soon-Yong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.131-131
    • /
    • 2013
  • A single-layer graphene has been uniformly grown on a Cu surface at elevated temperatures by thermally processing a poly(methyl methacrylate) (PMMA) film in a rapid thermal annealing (RTA) system under vacuum. The detailed chemistry of the transition from solid-state carbon to graphene on the catalytic Cu surface was investigated by performing in-situ residual gas analysis while PMMA/Cu-foil samples being heated, in conjunction with interrupted growth studies to reconstruct ex-situ the heating process. The data clearly show that the formation of graphene occurs with hydrocarbon molecules vaporized from PMMA, such as methane and/or methyl radicals, as precursors rather than by the direct graphitization of solid-state carbon. We also found that the temperature for vaporizing hydrocarbon molecules from PMMA and the length of time the gaseous hydrocarbon atmosphere is maintained, which are dependent on both the heating temperature profile and the amount of a solid carbon feedstock are the dominant factors to determine the crystalline quality of the resulting graphene film. Under optimal growth conditions, the PMMA-derived graphene was found to have a carrier (hole) mobility as high as ~2,700 cm2V-1s-1 at room temperature, superior to common graphene converted from solid carbon.

  • PDF

60 nm 와 20 nm 두께의 수소화된 비정질 실리콘에 따른 저온 니켈실리사이드의 물성 변화 (Property of Nickel Silicide with 60 nm and 20 nm Hydrogenated Amorphous Silicon Prepared by Low Temperature Process)

  • 김종률;박종성;최용윤;송오성
    • 한국진공학회지
    • /
    • 제17권6호
    • /
    • pp.528-537
    • /
    • 2008
  • ICP-CVD를 사용하여 수소화된 비정질 실리콘(a-Si:H)을 60 nm 또는 20 nm 두께로 성막 시키고, 그 위에 전자총증착장치(e-beam evaporator)를 이용하여 30 nm Ni 증착 후, 최종적으로 30 nm Ni/(60 또는 20 nm a-Si:H)/200 nm $SiO_2$/single-Si 구조의 시편을 만들고 $200{\sim}500^{\circ}C$ 사이에서 $50^{\circ}C$간격으로 40초간 진공열처리를 실시하여 실리사이드화 처리하였다. 완성된 니켈실리사이드의 처리온도에 따른 면저항값, 상구조, 미세구조, 표면조도 변화를 각각 사점면저항측정기, HRXRD, FE-SEM과 TEM, SPM을 활용하여 확인하였다. 60 nm a-Si:H 기판 위에 생성된 니켈실리사이드는 $400^{\circ}C$이후부터 저온공정이 가능한 면저항값을 보였다. 반면 20 nm a-Si:H 기판 위에 생성된 니켈실리사이드는 $300^{\circ}C$이후부터 저온공정이 가능한 면저항값을 보였다. HRXRD 결과 60 nm 와 20 nm a-Si:H 기판 위에 생성된 니켈실리사이드는 열처리온도에 따라서 동일한 상변화를 보였다. FE-SEM과 TEM 관찰결과, 60 nm a-Si:H 기판 위에 생성된 니켈실리사이드는 저온에서 고저항의 미반응 실리콘이 잔류하고 60 nm 두께의 니켈실리사이드를 가지는 미세구조를 보였다. 20 nm a-Si:H 기판위에 형성되는 니켈실리사이드는 20 nm 두께의 균일한 결정질 실리사이드가 생성됨을 확인하였다. SPM 결과 모든 시편은 열처리온도가 증가하면서 RMS값이 증가하였고 특히 20 nm a-Si:H 기판 위에 생성된 니켈실리사이드는 $300^{\circ}C$에서 0.75 nm의 가장 낮은 RMS 값을 보였다.