• 제목/요약/키워드: Ranging Signal

검색결과 249건 처리시간 0.024초

A Study on the Implementation Considerations of Communication System for Wireless Ranging Applications (무선 거리인식 응용을 위한 통신시스템 구현 고려사항에 관한 연구)

  • Roh, Jae-Sung;Kim, Sung-Chul;Shin, Yu-Sub
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.563-565
    • /
    • 2011
  • In this paper, the implementation consideration of communication system is suggested in IEEE 802.15.4a based wireless sensor network, and the practical issues for UWB ranging system design are investigated. First, design of UWB signals for ranging applications is considered, and selection of various signal parameters is studied. Then, link analysis is performed in order to determine UWB signal quality as a function of distance.

  • PDF

Simulation of GNSS Spoofing Detection Method Using Encrypted Ranging Signal (암호화 신호원을 이용한 위성항법 기만 검출기법 모의)

  • So, Hyoungmin
    • Journal of Advanced Navigation Technology
    • /
    • 제20권5호
    • /
    • pp.394-400
    • /
    • 2016
  • It is well known that the encrypted ranging signal, such as GPS P(Y) code, is immune to spoofing attack. However, in order for users to use the signal, there needs permission from the operator. And also there are many restrictions for use because of security issues. In this paper, a ground reference station equipped with high-gain directional antenna and a user receiver were simulated. In the reference station, the encrypted code can be demodulated from the high-gain signal. And then the code can be used to detect spoofing attack in the user receiver. This paper proposes the spoofing detection method using the encrypted signal and deals with simulation results.

Environment-Based Ranging Error Correction Technique Using IEEE 802.15.4a CSS PHY (IEEE 802.15.4a CSS PHY를 이용한 환경기반 거리측정오차 보정 기법)

  • Nam, Min-Seok;Park, Young-Kyun;Nam, Young Jin;Lee, Dong-Ha;Kang, Jin-Kyu;Lee, Sang-Cheol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • 제4권4호
    • /
    • pp.148-155
    • /
    • 2009
  • Precise localization heavily relies on the accuracy of its underlying ranging technique. It has been known that the Chirp Spread Spectrum (CSS) defined in the IEEE 802.15.4a provides more dependable ranging accuracy than the Received Signal Strength Indicator (RSSI) in the IEEE 802.15.4. This paper examines the accuracy of the CSS-based ranging technique in the indoor/outdoor environments and discovers its consistent inaccuracy in different environments. Next, it proposes an error-correction architecture for the CSS-based ranging technique that exploits the per-environment consistent inaccuracy information and user visiting patterns (represented by weights for each environment).

  • PDF

A Ranging Algorithm for IR-UWB in Multi-Path Environment Using Gamma Distribution (IR-UWB의 다중경로 환경에서감마분포를 이용한 거리 추정 알고리즘)

  • Kim, Jin-Ho;Kim, Hyeong-Seok;Cho, Sung Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제38B권2호
    • /
    • pp.146-153
    • /
    • 2013
  • The IR-UWB radar system radiates a pulse whose width is several hundred pico sec at Tx antenna and check the time to receive the pulse that reflected from target to measure the TOA. In this paper, we present a new algorithm which supplement the conventional ranging algorithm for more accurate estimation. We get received signal data using IR-UWB Radar module which equipped a NVA6000 UWB Transceiver and analysis the data of multi-path. Consequently, we found the property of UWB multi-path signal, which best fit a Gamma distribution. so we present a algorithm using Gamma-distribution and compared a performance with conventional ranging algorithm.

High-Precision Ranging Scheme based on Multipath Delay Analysis in IR-UWB systems (IR-UWB 시스템에서 다중경로 지연시간 분석을 통한 고 정밀 거리추정)

  • Jeon, In-Ho;Kim, Young-Ok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제35권9C호
    • /
    • pp.778-785
    • /
    • 2010
  • This paper proposes a high-precision ranging scheme based on channel estimation technique and multipath delay analysis in IR-UWB systems. When the IR-UWB signal is transmitted and received, the high-precision ranging is estimated with the time-of-arrival information of the signal. In the proposed scheme, the channel estimation process with the minimum mean square error technique or zero forcing technique is performed and the overlapped multipath within the pulse is analyzed with matrix pencil (MP) algorithm to achieve the ranging accuracy of centimeters. The performance of proposed scheme is evaluated with various IEEE 802.15.4a channel models and the relationship between the ranging performance and the computational complexity is analyzed in terms of the MP parameter values.

SNR Enhancement Algorithm Using Multiple Chirp Symbols with Clock Drift for Accurate Ranging

  • Jang, Seong-Hyun;Kim, Yeong-Sam;Yoon, Sang-Hun;Chong, Jong-Wha
    • ETRI Journal
    • /
    • 제33권6호
    • /
    • pp.841-848
    • /
    • 2011
  • A signal-to-noise ratio (SNR) enhancement algorithm using multiple chirp symbols with clock drift is proposed for accurate ranging. Improvement of the ranging performance can be achieved by using the multiple chirp symbols according to Cramer-Rao lower bound; however, distortion caused by clock drift is inevitable practically. The distortion induced by the clock drift is approximated as a linear phase term, caused by carrier frequency offset, sampling time offset, and symbol time offset. SNR of the averaged chirp symbol obtained from the proposed algorithm based on the phase derotation and the symbol averaging is enhanced. Hence, the ranging performance is improved. The mathematical analysis of the SNR enhancement agrees with the simulations.

Frequency Offset Estimation for IR-UWB Packet-Based Ranging System (IR-UWB 패킷 기반의 Ranging 시스템을 위한 주파수 옵셋 추정기)

  • Oh, Mi-Kyung;Kim, Jae-Young;Lee, Hyung-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제34권12C호
    • /
    • pp.1184-1191
    • /
    • 2009
  • We aim at frequency offset estimation for IEEE 802.15.4a ranging systems, where an impulse-radio ultra-wideband (IR-UWB) signal is exploited, By incorporating the property of the ternary code in the preamble, we derive a simplified maximum-likelihood (ML) estimation of the frequency offset. In addition, a closed form estimator for implementation is investigated. Simulation results and theoretical analysis verify our estimators in IEEE 802.15.4a IR-UWB packet-based ranging systems.

An Innovative Approach to Track Moving Object based on RFID and Laser Ranging Information

  • Liang, Gaoli;Liu, Ran;Fu, Yulu;Zhang, Hua;Wang, Heng;Rehman, Shafiq ur;Guo, Mingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권1호
    • /
    • pp.131-147
    • /
    • 2020
  • RFID (Radio Frequency Identification) identifies a specific object by radio signals. As the tag provides a unique ID for the purpose of identification, RFID technology effectively solves the ambiguity and occlusion problem that challenges the laser or camera-based approach. This paper proposes an approach to track a moving object based on the integration of RFID and laser ranging information using a particle filter. To be precise, we split laser scan points into different clusters which contain the potential moving objects and calculate the radial velocity of each cluster. The velocity information is compared with the radial velocity estimated from RFID phase difference. In order to achieve the positioning of the moving object, we select a number of K best matching clusters to update the weights of the particle filter. To further improve the positioning accuracy, we incorporate RFID signal strength information into the particle filter using a pre-trained sensor model. The proposed approach is tested on a SCITOS service robot under different types of tags and various human velocities. The results show that fusion of signal strength and laser ranging information has significantly increased the positioning accuracy when compared to radial velocity matching-based or signal strength-based approaches. The proposed approach provides a solution for human machine interaction and object tracking, which has potential applications in many fields for example supermarkets, libraries, shopping malls, and exhibitions.

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

TOA-Based Ranging Method using CRS in LTE Signals (LTE 신호의 CRS를 이용한 TOA 기반 거리 측정 방법)

  • Kang, Taewon;Lee, Halim;Seo, Jiwon
    • Journal of Advanced Navigation Technology
    • /
    • 제23권5호
    • /
    • pp.437-443
    • /
    • 2019
  • In this paper, a new algorithm for the calculation of the range between an LTE base station (BS) and a user equipment (UE) using time-of-arrival (TOA) measurements of LTE signals is proposed. First, the cell identity (cell ID) of the received signal is acquired using the primary synchronization signal (PSS) and secondary synchronization signal (SSS) to identify the BS transmitted the signal. The proposed algorithm exploits the cell-specific reference signal (CRS), the reference sequence inserted in commercial LTE signals, to estimate the time delay using 2D cross-correlation. The obtained TOA estimations can be used to calculate the range employed from the known BS location. The performance of the proposed algorithm is evaluated with the experiment performed using real LTE signals transmitted from the commercial BS.