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Abstract 

 
RFID (Radio Frequency Identification) identifies a specific object by radio signals. As the 
tag provides a unique ID for the purpose of identification, RFID technology effectively solves 
the ambiguity and occlusion problem that challenges the laser or camera-based approach. This 
paper proposes an approach to track a moving object based on the integration of RFID and 
laser ranging information using a particle filter. To be precise, we split laser scan points into 
different clusters which contain the potential moving objects and calculate the radial velocity 
of each cluster. The velocity information is compared with the radial velocity estimated from 
RFID phase difference. In order to achieve the positioning of the moving object, we select a 
number of K  best matching clusters to update the weights of the particle filter. To further 
improve the positioning accuracy, we incorporate RFID signal strength information into the 
particle filter using a pre-trained sensor model. The proposed approach is tested on a SCITOS 
service robot under different types of tags and various human velocities. The results show that 
fusion of signal strength and laser ranging information has significantly increased the 
positioning accuracy when compared to radial velocity matching-based or signal 
strength-based approaches. The proposed approach provides a solution for human machine 
interaction and object tracking, which has potential applications in many fields for example 
supermarkets, libraries, shopping malls, and exhibitions. 
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1. Introduction 

At present, indoor positioning has drawn more and more attention thanks to the rapid 
development of location-based services (LBS), such as city guidance, car parking, and asset 
tracking [1][2]. The most famous positioning system is GPS (Global Positioning System), 
which has been widely used in many areas [2], but GPS is not suitable for indoor environments 
due to the occlusion of signals from buildings. Indoor positioning is assumed to be more 
challenging [2][3], as it needs to consider the indoor multipath effects, uneven signal strength 
distribution, and signal interference and fluctuations. 

A typical indoor positioning system may use different technologies for positioning, for 
example ultra-wideband (UWB) [4], Wifi [5], and RFID [6] [7]. Recent research shows a 
growing interest in deploying RFID technology in industrial environments (for example 
access management, logistics, and retail) and people's daily life. RFID achieves identification 
of objects through electromagnetic waves [6]. Due to its unique and contactless features of 
identification, RFID gradually becomes the preferred technology for indoor positioning. For 
example, Liu et al. [8] [9] used RFID for the inventory of a library using a mobile robot. Xie et 
al. [10] used RFID to create a smart bookshelf that provides automated and intelligent book 
management. 

In the literature, extensive researches have been done on localization based on RFID 
technology. Cicirelli et al. [11] studied the feasibility to use passive RFID tags for localization. 
They used a probabilistic sensor model to achieve the positioning of an RFID tag by taking the 
measurements at different positions of a moving robot. However, this method requires a 
manual calibration stage to construct the sensor model. Vorst et al. [12] proposed a 
semi-autonomous method to construct the RFID sensor model. They placed some known 
RFID tags in an environment, collected the data in that environment with a robot, and then 
built an off-line RFID sensor model. Subsequently, Joho et al. [13] used the signal strength 
information to establish a more accurate sensor model and improved the overall positioning 
accuracy. Hightower et al. [14] proposed SpotON, which uses the signal strength from at least 
three readers to calculate the location of the tag by triangulation. Some researches also focused 
on the 3D (three dimensional) positioning of RFID tags. Wu et al. [15] proposed an improved 
3D LANDMARC indoor positioning method, which can reduce the positioning error. 

Taking into account the limitations of pure RFID systems, some researchers fused other 
sensory information to reduce the positioning error of a tag. Macomber et al. [16] proposed to 
use visual cameras to localize LED-enhanced passive RFID tags. Rohweder et al. [17] 
combined the environmental structure information to reduce the positioning error of a tag. 
Deyle et al. [18] proposed an optimized searching algorithm that can help a service robot to 
quickly locate RFID tags. Some researchers also focused on dynamic objects tracking using 
RFID tags. Liu et al. [8] [19] combined RFID and laser sensor to follow a dynamic RFID tag 
with obstacle avoidance capabilities using a mobile robot. Their algorithm combines two 
kinematics models and a dual particle filter to achieve fast tracking of dynamic RFID tags. Fu 
et al. [20] studied a new algorithm that uses particle filters to fuse RFID phase and laser 
clustering from laser sensor to locate moving objects. Scherhaufl et al.  [21] localized UHF 
RFID tags by evaluating the phase-of-arrival signal of a tag that is backscattered from several 
antennas. 
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Many researchers in the literature also focus on the new design of antennas to improve 
the performance of RFID systems. Chen et al. [22] showed that the performance of the RFID 
antenna has a significant impact on the reading range and detection accuracy of the RFID 
system. Subsequently, they [23] proposed a broadband circularly polarized patch antenna 
suitable for the global UHF band 840-960 MHz. Qing et al. [24] proposed a segmented loop 
antenna for ultra high frequency (UHF) near field RFID applications. By changing the size and 
the separation of the backing metal plate, they [25] applied the RFID system to a smart-shelf. 
Alibakhshi-Kenari et al. [26] designed a miniaturized planar metamaterial antenna to decrease 
the antenna size and enlarge the bandwidth and gain. They also [27] proposed a single-radiator 
cassette tag for high-frequency (HF) and ultra-high-frequency (UHF) dual-frequency RFID 
positioning. In addition, these authors proposed some new design of miniature antennas which 
are suitable for UWB devices [28] [29] [30]. 

Sadeghzadeh et al. [31] proposed a novel miniature ultra-wideband antenna with better 
radiation characteristics. Limiti et al. [32] proposed a thin light antenna based on a periodic 
array with complementary artificial magnetic conductor metamaterial structures. 
Alibakhshi-Kenari et al. [33] analyzed the matching and radiation characteristics of 
subwavelength resonant patch antennas filled with different metamaterial blocks. Lee et al. 
[34] integrated a small resonant antenna with a portable RF module using a composite 
right/left hand transmission line. 

The focus of this paper is on passive RFID that works at ultra-high frequency (UHF) band 
(865-928 MHz), which can identify an object up to a distance of 7 meters [7]. RFID tag uses 
globally unique ID for the recognition of object, which can help to solve the ambiguity 
problem in laser-based or visual-based approaches. As compared to visual tracking, it does not 
need any classification or recognition algorithms and solves the problem of visual occlusion. 
The laser sensor can provide the distance to the surrounding objects. But, it is difficult to 
distinguish the tracking object from the surrounding objects in a complex environment, which 
results in ambiguity of localization. We use the unique identifier of RFID to solve the 
ambiguity problem of laser sensors. It is well known that the phase is a periodic function of the 
distance (with a period of 360 degrees), which means the same phase value will repeat at the 
distances with an interval of the wavelength. If the radial distance that object moves is larger 
than a wavelength, the phase might experience multiple rotations of 360 degrees. In this case, 
the radial velocity computed from the phase difference is inaccurate, which leads to a large 
positioning error. We incorporate RFID signal strength information into the particle filter 
using a pre-trained sensor model to overcome this shortcoming and improve its positioning 
accuracy. Similar to [20], we use radial velocity matching-based approach to fuse the phase 
and laser sensor information. Extensive experiments (i.e., different walking velocities and 
multiple tag scenarios) are conducted to show the effective of our approach. 

2. System Description 

Due to the increased complexity of the indoor environment, the positioning accuracy of a 
single source of sensory information is not satisfactory. The laser sensor used in this paper can 
only obtain the location information of objects in the environment, but can not separate the 
target being tracked from a large number of objects in the environment. However, RFID tags 
have unique IDs, which can be easily used for the purpose of identification. Therefore, this 
paper incorporates the phase information to identify the object through velocity matching, but 
velocity matching needs to rely on a precise estimation of the RFID phase. The 360 degree 
phase rotation introduces a large amount of error to the phase velocity estimation and as a 
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result leads to a poor positioning accuracy. Therefore, this paper further combines signal 
strength information to reduce the positioning error. 

This paper focuses on localization of a dynamic object affixed with an RFID tag by the 
integration of RFID (i.e., RSS and phase) and laser ranging information. Therefore, the input 
of the system is the information collected by the two sensors (i.e., RFID system and 2D laser 
range finder), and the output is the position of the moving object. Specifically, we fuse RFID 
signal strength into a particle filter using a pre-trained sensor model. We further integrate 
RFID phase and laser ranging information through radial velocity matching. Fig. 1 shows an 
overview of our positioning system.   

A person wears a tag and walks in front of the robot. Our system collects RFID (RSS and 
the phase) and laser ranging information. Since the location information of the tag is not 
available by the RFID sensor itself, we investigated the possibility of using the signal strength 
and phase information to track the RFID tag. 

 
Fig. 1. System overview 

 
Due to high resolution of the modern laser range finders, we often observe more than one 

laser beams reflected from a moving object. To better represent the object and compute the 
radial velocity, we  first segment the raw laser data into clusters. Then, we calculate the 
laser-based radial velocity by laser clustering and phase-based radial velocity using RFID 
phase difference. We compute the similarity between the laser-based radial velocity and the 
RFID phase-based radial velocity. By sorting these similarity values, we select the K  clusters  
(i.e., objects) with the highest similarity values. These clusters will be incorporated into the 
particle filter for weight updates. 

If the object moves too fast, the radial velocity estimated from the phase difference is not 
correct due to the 360 degree rotation of the phase. This will result in a large positioning error 
during the tracking of the object. To improve the system’s positioning accuracy, we 
incorporate RFID signal strength using a pre-trained sensor model. 

3. Dynamic Object Tracking based on a Particle Filter 
Our goal is to determine the location tX of a moving object, i.e., the posterior probability 

1: 1: 1:( , , )t t t tp X Z r u  at time t . tZ  represents RFID measurement at time t , tu and tr represent the 
motion information and laser sensor measurement at time t . The posterior probability 
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1: 1: 1:( , , )t t t tp X Z r u  can be decomposed as: 

1: 1: 1: 1 1 1: 1 1: 1 1: 1( , , ) ( , ) ( ) ( , ) ( , , )t t t t t t t t t t t t t t t t tp X Z r u p X X u p Z X p r X Z p X Z r uη − − − − −= ⋅ ⋅ ⋅ ⋅        (1)                                        
where tη  is a normalizer. 1( , )t t tp X X u−  is motion model, which predicts the location of an 
object tX  at time t  given the motion information tu and the previous location 1tX − . ( )t tp Z X  
is RFID sensor model that represents the likelihood of obtaining a detection tZ  given tX . 
Here an RFID measurement tZ  carries two pieces of information, i.e., { , }tZ d s= , where d  
indicates whether the tag is detected and s indicates signal strength when the tag is detected. 

( , )t t tp r X Z is sensor model that incorporates the laser and RFID information using radial 
velocity matching. 1 1: 1 1: 1 1: 1( , , )t t t tp X Z r u− − − − is status of object at time 1t − .  

3.1 RFID Sensor Model 
The RFID sensor model represents the likelihood of getting a tag detection Z at a 

location ( , )x y  in antenna coordinate system. In this paper, we use a semi-autonomous learning 
method to establish the sensor model [13]. Several RFID tags are installed on the wall and 
actual locations of these tags are known. We manually control a mobile robot in the 
environment to collect the measurements (RFID detections and the robot's pose, which is 
determined using a laser-based Monte Carlo localization approach). After collecting the 
detections, sensor model is built through an offline process. As described before, RFID reader 
provides information whether the tag is detected or not (i.e., d ) and the corresponding signal 
strength (i.e., s ), therefore the probability of receiving a detection Z  at location ( , )x y  can be 
described as: 

 ( ( , )) ( ( , )) ( , ( , ))p Z x y p d x y p s d x y=                  (2) 
where ( ( , ))p d x y  indicates the probability of detecting a tag at ( , )x y and ( , ( , ))p s d x y  
represents the likelihood of receiving a signal strength s  at ( , )x y  when the tag is detected. 
This paper uses a two-dimensional grid to represent the sensor model. If a tag is detected in a 
grid ( , )x y , we define it as a positive detection, otherwise a negative detection. ( ( , ))p d x y can 
be obtained using the following formula: 

 ( , )

( , ) ( , )

( ( , )) x y

x y x y

m
p d x y

m m

+

+ −=
+

                                  (3) 

where ( , )x ym+  is the number of positive detections in grid ( , )x y and ( , )x ym−  is the number of 
negative detections in grid ( , )x y . The signal strength at a given location is assumed to be a 
Gaussian with mean ( , )x yu  and variance ( , )x yσ .The likelihood of receiving a signal strength s  
at this location can be obtained as: 

 
2

( , )
2
( , )( , )

( )1( , ( , )) exp( )
22

x y

x yx y

s u
p s d x y

sps

−
= ⋅ −                  (4) 

3.2 Laser Clustering and Radial Velocity Estimation 
In order to accurately localize an object, we cluster the data returned by the laser sensor. 

We first create groups from the laser ranging data and then split the group into clusters [35]. 
After grouping and splitting, we set the guide line as diameter to create a circle as a 
representation of the cluster. The clustering result at time t is described as: 
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( ) ( )( ) ( )
1 1{ } { , , }t t

i iN Ni i
tt t i t itC C r x y= == =                            (5) 

where ( )i
tr  is radius of the i th cluster, ( ) ( )

( , )
i i

t tx y is center of the i th cluster, and tN  is the 
number of clusters at time t . Since the object to be extracted in this paper is a human, the 
radius of the object should be limited with a certain range maxR . After this step, discrete laser 
ranging points are clustered into many clusters. 

For each cluster ( )i
tC  at time t , we find the closest cluster 

  
( )

1
j

tC
∧

− at time 1t − . 
  

( ) ( )
1( , )i j

t tC C
∧

− could be considered as the same object. 
  
j
∧

 is given by: 
  ( ) ( ) ( ) ( )2 2

1 1arg min ( ) ( )
i j i j

t t t tj
j x x y y
∧

− −= − + −                 (6) 

where 11 tj N −≤ ≤ . The radial velocity of cluster i at time t is computed as: 
    

( ) ( ) ( ) ( )2 2 2 2
1 1( ) ( ) ( ) ( ) ( )

i i j j
t tt ti

t

x y x y
v

t

∧ ∧

− −+ − +
=

∆
               (7) 

3.3 RFID Phase Radial Velocity Estimation based on Phase Difference 
The RFID reader activates the circuitry in the RFID tag by transmitting radio waves. 

After harvesting enough energy, RFID tag backscatters the radio signals. The total phase 
rotation of a tag is expressed as: 

 22 T TAG R
Rθ π θ θ θ
λ

= ⋅ + + +                 (8) 

where λ  is the wavelength , 2R  is the total distance the signal travels, Tθ is the phase rotation 
of reader’s transmission circuit, TAGθ  is the phase rotation caused by the tag, and Rθ  is the 
phase rotation introduced by the receiver. Based on the phase values at two adjacent 
timestamps, we can calculate the radial velocity of the tag. Let 1tθ −  and tθ denote the phase 
readings at time 1t −  and t , the radial distance moved by the tag during time t∆  can be 
expressed as: 

 1
12

1 ( )
2 2

t t
rd

θ θ
λ−−

= ⋅                             (9) 

where 
2rd λ

< , therefore radial velocity of the tag ( )r
tv can be computed as: 

( )r r
t

dv
t

=
∆

                                                  (10) 

3.4 Radial Velocity Matching between RFID and Laser Clusters 
Although the laser clustering presented in section 3.2 can be used to obtain location of the 
object, it has an ambiguity problem to identify the object, as there may be more than one 
clusters extracted from laser ranging data, therefore we need to identify the respective cluster 
from a large number of clusters. RFID provides a solution to this issue due to its unique 
identification. The phase information from RFID can be used to estimate radial velocity of the 
moving object. The cluster with the closest radial velocity to RFID phase-based radial velocity 
is regarded as the object to be tracked. In this paper, we use ( ) ( )( , )i r

t tsim v v  to measure the 
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similarity between the two estimated velocities (i.e., phase radial velocity ( )r
tv  and laser radial 

velocity ( )i
tv ): 

( ) ( )
( ) ( )

( ) ( )
( , ) 1

i r
t ti r

t t i r
t t

v v
sim v v

v v

−
= −

+
              (11) 

a larger ( ) ( )( , )i r
t tsim v v  value means both velocities are very close at time t  and it is more likely 

that the corresponding cluster is the object we want to localize. To improve the localization 
accuracy, we select the K  clusters with the highest similarities score (i.e., (1) ( ),..., K

t tC Cππ  ) to 
fuse with the particle filtering. 

3.5 Particle Filtering for Sensor Fusion 
Due to the non-linear and non-Gaussian characteristics, we choose the partilce filter as  the 
implementation of the Bayesian interface. The particle filtering uses randomly sampled  
particles to represent the probability density distribution. The position of a moving object is 
represented by a set of weighted particles, i.e., [ ] [ ]

1{ , }n n N
t t t nX X w == , where N  is the number of 

particles, [ ] [ ] [ ]{ , }n n n
t t tX x y= is the particle's two-dimensional coordinates and [ ]n

tw  is the weight 
of the particle. The particle filtering performs prediction, update, and resampling based on the 
measurements obtained by the RFID sensor and laser sensor, which will be described in the 
rest of this section. 

3.5.1 Prediction Stage 
Due to uncertainty of moving direction of the object, this paper uses the Gaussian function as 
prediction models. We predict the current state of a particle [ ]n

tX  based on the previous state 
[ ]

1
n

tX −  corrupted with a Gaussian noise: 
[ ] [ ]

1
[ ] [ ]

1

(0, )
{

(0, )

n n
t t
n n

t t

x x N
y y N

σ
σ

−

−

= +
= +

                            (12) 

where σ  represents the standard deviation  of a Gaussian white noise. A suitable σ  has to be 
chosen to represent moving uncertainty of the object; otherwise, the particle filtering will face 
the problem of tracking failure where there is no particle sits around the true location of the 
object. 

3.5.2 Update Stage 
At this stage, we update the weights of particles by the sensor model, which is a 

combination of RFID signal strength model and radial velocity matching model presented 
earlier in this paper. We first update the particle weights by using the best K  matched laser 
clusters obtained from the radial velocity matching: 

  
1

[ ] [ ] ( ) ( ) 2 [ ] ( )1( , ) exp( ( , ))
2

i
n n i r n i

t t t t t t t
K

w w sim v v d X Cp pη
=

= ⋅ ⋅ −∑       (13) 

  
( )( ) [ ] 2[ ] 2

2 [ ] ( ) ( )( )
( , )

ii nn
tn i tt t

t t
y yx x

d X C
ππ

π

ρ ρ
−−

= +                     (14) 

where ρ denotes a translational coefficient which affects the weight distribution. To achieve 
better positioning result, the sensor model built in section 3.1 is used to further constrain the 
weights of the particle filter: 
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                               [ ] [ ] [ ]
1 ( )n n n

t t t tw w p Z Xη −= ⋅ ⋅                        (15) 
After updating weights of the particles, resampling is performed by duplicating the 

particles with high weights and removing particles with small weights. The position of the 
moving object is determined as a weighted mean among all particles after resampling. 

4. Experimental Results 

4.1 Experimental Setup 
We verified the proposed approach on a SCITOS G5 service robot from Metralabs as 

shown in Fig. 2. A laser sensor (SICK S300) is mounted on the robot. The laser sensor 
provides a measuring distance up to 20 meters with a resolution of o0.5  and measuring angle 
of o270 . A UHF RFID reader (Impinj Speedway Revolution R420) is additionally mounted on 
the robot. The reading distance of the reader is up to 7 meters. Two circularly polarized 
antennas (Lairs Technologies SS8688P) are connected to the reader with a height of 0.8 meters 
and an angle of o45± to the forward moving direction of the robot. To train the RFID sensor 
model, 65 RFID tags (Alien Squiggle Wet Inlay) were installed on the walls with a height 
similar to the antenna. The physical locations of these tags are known. The sampling rate of the 
reader is set to be 0.4 seconds per sample. 

 

 
Fig. 2. A snapshot of the experiment 

 
The robot was controlled to move on different paths in the corridor at a moving velocity 

of 0.2 m/s. The experiment lasted for 9 hours and the robot moved for a distance of 6500 
meters. An example of the sensor model is shown in Fig. 3. Fig. 3(a), Fig. 3(b), and Fig. 3(c) 
give the sensor model for different signal strengths. By comparing the different signal strength 
models from Fig. 3, we can know that the lower the signal strength, the larger the uncertainty 
of the object position. Fig. 3(d) gives the average signal strength. It can be clearly seen from 
Fig. 3(d) that the closer the antenna, the stronger the signal strength. To evaluate the tracking 
accuracy, we placed the robot at a fixed position, as shown in Fig. 2. A person carried an RFID 
tag and walked along a rectangle with a size of 4m× 2m at a velocity of approx 0.4m/s. In total, 
5 rounds of measurements were recorded. 
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4.2 Analysis of Experimental Results 
We first analyzed the positioning accuracy under different types of tags and different 

number of antennas, and then examined the positioning accuracy with RSS alone, radial 
velocity matching alone, and a combination of RSS and radial velocity matching. Afterwards, 
the impact of different parameters of our approach are analyzed, for example the number of 
particles N , the values of K , prediction parameterσ , update parameter ρ , different types of 
tags, and different walking velocities.  

                 
(a)                                                                          (b) 

                
                           (c)                                                                            (d) 
Fig. 3. Illustration of RFID sensor models. (a) Sensor model with an RSS of -48 dBm; (b) Sensor 

model with an RSS of -55 dBm; (c) Sensor model with an RSS of -65 dBm; (d) Mean received signal 
strength. 

 
Fig. 4. Different types of tags used to test the positioning accuracy 
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Table 1. Effects of different types of tags on the positioning error in meters under different approaches 
 

Type of tags 
Positioning approach 

RSS[13] Radial velocity 
matching[20] 

Ours 

MiniWeb 0.95 0.41 0.28 
Frog 3D 0.92 0.44 0.31 

AD-680r6-P 1.16 0.40 0.33 
Squiggle 0.77 0.41 0.25 
DogBone 0.89 0.43 0.32 

4.2.1 Influence of Different Types of Tags on Positioning Accuracy 
This section discusses the impact of different types of tags on the positioning result. As can be 
seen from Fig. 4, we used five different types of tags (namely Smartrac MiniWeb, Smartrac 
Frog 3D, Avery Dennison AD-680r6-P, Alien Squiggle, and Smartrac DogBone), to test the 
positioning accuracy. As shown in Fig. 5 and Table 1, with RSS alone, the Squiggle tag gives 
a relatively good positioning result (0.77 m). The reason can be explained as follows: owing to 
different designs, different types of tags may have different propagation characteristics. 
Therefore, the sensor model built based on the Squiggle tag is not suitable for other types of 
tags. We compared the method to different references in the literature in Table 1 and added a 
paragraph to discuss about the results. To show the effectiveness of our approach, we 
compared our combined approach with two approaches in the literature, namely RSS-based 
approach [13] and radial velocity matching-based approach [20]. The combined approach 
shows better positioning accuracy for all types of tags, for example the Squiggle tag reaches a 
positioning accuracy of 0.25 m, which is an improvement of 67.53% and 39.02% when 
compared to signal strength-based approach (0.77 m) in and velocity matching-based 
approach (0.41 m). To summarize, our approach can significantly improve the positioning 
accuracy regrading to different types of tags used when compared to RSS-based approach [13] 
and radial velocity matching-based approach [20]. 
 

 
(a)                                                                               (b) 
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(c)                                                                                (d) 

Fig. 5. Evaluation of positioning accuracy under different approaches using Squiggle tag. (a) 
Localization error at different timestamps using different approaches; (b) Estimated track 

using radial velocity matching-based approach; (c) Estimated track using RSS-based 
approach; (d) Estimated track of our approach 

4.2.3 Influence of Different Number of Antennas Used 
The number of antennas affects the coverage of the RFID reader, which leads to different 

positioning accuracy. In this section, we examined the influence of using different numbers of 
antennas on positioning results. Table 2 gives a comparison of the positioning results. As can 
be seen from Table 2, the antenna configuration has a significant influence on the positioning 
results. The positioning error become worse with only one antenna. Owing to the large 
coverage of  two antennas, we achieved  better positioning accuracy. By using two antennas, 
we obtained a positioning accuracy of 0.25 m, which is an improvement of 62.12% and 
56.90% when compared to the independent use of  left antenna (i.e., 0.66 m) and right antenna 
i.e., 0.58 m), respectively. Therefore, we choose two antennas for the rest of experiments.  
In this paper, we choose K  best matches to further restrict the weights of the particles, 
therefore the choice of K  affects the updating of the particle filter and positioning accuracy. 
The number of particles N  also affects the positioning result and the average updating time of  
particles. This section evaluated the effect of different K  and N  on the experimental results. 
The results are listed in Table 3 and Table 4. As it can be seen in Table 3, with a small 4K ≤ , 
the positioning error is large, due to the small number of matched clusters used for positioning. 
The positioning accuracy increases with the increase of K . When 9K ≥ , the positioning error 
basically remains stable. As it can be seen from Table 4 that a small 10N ≤  results in a large 
positioning error (0.483 meters). When the number of particles 100N ≥ , we obtain almost the 
same positioning accuracy (0.255 meters). Running the algorithm with a large number of 
particles N  obviously takes more time. Considering the accuracy and running time of our 
approach, we choose 9K =  and 100N =  throughout this paper. 
 

Table 2. Positioning error under the impact of different number of antennas  
Antenna 

configuration Only right antenna Only left antenna Two antennas 

Accuracy (m) 0.58 0.66 0.25 
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4.2.4 Impact of K and N on the Positioning Accuracy 
Table 3. Influence of different K  on positioning error 

K  1 4 9 13 100 
Accuracy(m) 0.357 0.325 0.255 0.251 0.252 
 
Table 4. Influence of different number of particles N  on the positioning error and updating time (ms) 

N  10 50 100 200 
Accuracy (m) 0.483 0.341 0.255 0.253 

Running time (ms) 0.030 0.079 0.137 0.245 
 

4.2.5 Influence ofσ and ρ on the Experimental Results 

In our approach,σ and ρ are two important parameters of the particle filtering.σ controls 
the distribution of particles in the prediction stage and ρ  adjusts weights of the particles in the 
update stage. In this section, we analyzed the effects of σ  and ρ  on the positioning results. 
We set σ  to the following values {0.2,0.7,1.0,2.0} and ρ  as follows {0.001, 0.05, 0.5, 1.0}. 
The results are shown in Fig. 6. It can be seen from Fig. 6 that σ  and ρ have high influence 
on the positioning accuracy.With 0.2σ ≤ , the particle filtering can not catch the movement of 
the object and results in a larger positioning error. The positioning accuracy increases with the 
increase of σ . With 0.2σ ≥ , the particle filter can not converge to the true position of object 
due to the large noise added in the prediction stage. With 1.0σ = , the degree of particle 
dispersion is more moderate and gives the best positioning accuracy. ρ  plays an important 
role in the update stage and also has an imapct on the positioning error. As shown in Fig. 6, 

0.001ρ =  gives a positioning accuracy of 0.43 m, and 1.0ρ =  gives a positioning accuracy of 
0.37 m. Choosing too large or too small value of ρ  will produce a large positioning 
error. 0.05ρ =  gives the best positioning accuracy of 0.25 m, which is an improvement of 
67.53% and 39.02% when compared to the settings of 0.001ρ =  (i.e., 0.43 m) and 1.0ρ =  (i..e, 
0.37 m), respectively. The positioning accuracy of 0.05ρ = increases from 0.37 to 0.25 m, an 
increases of 39.02% compared with 1.0ρ = . Fig. 6(b), 6(c), and 6(d) show a comparision of 
the trajectories under different ρ . 
 

      
(a)                                                                               (b) 
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(c)                                                                              (d) 

Fig. 6. Influence of different σ and ρ  on the positioning error. (a) Positioning error with different 
σ and ρ ; (b) Estimated track with 0.001ρ = ; (c) Estimated track with 0.05ρ = ; (d) Estimated track 

with 1.0ρ =  

4.2.6 Influence of Different Walking Velocities on Positioning Accuracy 
In this section, we evaluated the positioning error with the influence of different moving 

velocities, namely 0.02 m/s, 0.2 m/s, 0.4m/s and 0.6 m/s. A comparison of the positioning 
accuracy is shown in the Table 5. As shown in this table, when the moving velocity of the 
object is small (0.02 m/s), the radial velocity matching can not effectively distinguish the 
moving objects from the stationary object, resulting in a large positioning error (0.75 m). 
When the moving speed is higher than 0.6 m/s, the radial distance of the dynamic target 
moving at the adjacent time is larger than half a wavelength, resulting in a large radial velocity 
estimation error and a poor positioning accuracy. We obtain the best positioning accuracy (i.e., 
0.25 m) with a velocity of 0.4 m/s, which is an improvement of 66.67% and 56.90% when 
compared to a velocity of 0.02 m/s (accuracy of 0.75 m) and 0.6 m/s (accuracy of  0.44 m), 
respectively. 

 
Table 5. Effects of different moving velocities on the positioning error 

Moving Velocity (m/s) 0.02 0.2 0.4 0.6 
Accuracy (m) 0.75 0.29 0.25 0.44 

5. Conclusion 
This paper proposed a method to fuse RFID and laser ranging information for moving 

object tracking. We use a particle filter to fuse the signal strength by an RFID sensor model 
and laser ranging information through radial velocity matching. The proposed approach takes 
advantages of RFID and a laser sensor and provides a better positioning accuracy as compared 
to the state-of-the-art approaches. We validated the proposed method on a service robot. 
Experimental results proved that we can achieve a positioning accuracy of 0.25 m by 
integrating RFID and laser ranging information, which is an improvement of 67.53% and 
39.02% as compared to RSS-based approach (0.77 m) and radial velocity matching-based 
approach (0.41 m) respectively. The proposed approach provides a solution to precisely track 
dynamic objects by combining the laser range and RFID information. The proposed approach 
has potential applications for human machine interaction and object tracking in many fields 
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for example supermarkets, libraries, shopping malls, and exhibitions. In our current work, the 
prediction of the object is done by a random walk, therefore a future research direction is to 
incorporate the moving direction and velocity of the object to reduce the positioning error. 

References 
[1] S. N. He and S-H. G. Chan, “Wi-Fi fingerprint-based indoor positioning: Recent advances and 

comparisons,” IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 466–490, 2016. 
Article (CrossRef Link) 

[2] A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, R. Liu, C. Yuen, R. Raulefs, “Recent Advances in 
Indoor Localization: A Survey on Theoretical Approaches and Applications,” IEEE 
Communications Surveys Tutorials, vol. 19, no. 2, pp. 1327–1346 , 2017. Article (CrossRef Link) 

[3] R. Liu and C. Yuen and T. N. Do and U. X. Tan, “Fusing Similarity-Based Sequence and Dead 
Reckoning for Indoor Positioning Without Training,” IEEE Sensors, vol. 17, no. 13, pp. 
4197-4207, July, 2017. Article (CrossRef Link) 

[4] R. Liu and C. Yuen and T. N. Do and D. W. Jiao and X. Liu and U-X. Tan, “Cooperative Relative 
Positioning of Mobile Users by Fusing IMU Inertial and UWB Ranging Information,” in Proc. of 
the 2017 IEEE International Conference on Robotics and Automation (ICRA 2017), PP. 
5623-5629, 2017. Article (CrossRef Link) 

[5] R. Liu, C. Yuen, T. N. Do, Y. Jiang, X. Liu, and U-X. Tan “Indoor positioning using 
similarity-based sequence and dead reckoning without training,” in Proc. of the 19th IEEE 
International workshop on Signal Processing advances in Wireless Communications (SPAWC 
2017), PP. 1-5, 2017. Article (CrossRrf Link) 

[6]  H. Ma and K. Wang , “Fusion of RSS and Phase Shift Using the KalmanFilter for RFID 
Tracking,” IEEE Sensors Journal, vol. 17, no. 11, pp. 3551-3558, Apr, 2017. 
Article (CrossRef Link) 

[7]  F. Seco and A. R. Jime ´nez, “Smartphone-Based Cooperative Indoor Localization with RFID 
Technology,” Sensors, vol. 18, no. 1, pp. 266-266, Jan, 2018. Article (CrossRef Link) 

[8] R. Liu and A. Zell, “On tracking dynamic objects with long range passive UHF RFID using a 
mobile robot,” International Journal of Distributed Sensor Networks, Art. no. 781380, Jan. 2015. 
Article (CrossRef Link) 

[9] R. Liu, A. Koch, and A. Zell, “Mapping UHF RFID Tags with a Mobile Robot using a 3D Sensor 
Model,” in Proc. of the 2013 IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS 2013), pp. 1589-1594, 2013. Article (CrossRef Link) 

[10] L. Xie, Q. Li, and C. Wang, “Exploring the Gap between Ideal and Reality: An Experimental Study 
on Continuous Scanning with Mobile Reader in RFID Systems,” IEEE Transactions on Mobile 
Computing, vol. 14, no. 11, pp. 2272–2285, Nov, 2015. Article (CrossRef Link) 

[11] G. Cicirelli, A. Milella, and D. D. Paola, “Supervised learning of RFID sensor model using a 
mobile robot,” in Proc. of the IEEE International Conference on Rfid-Technologies and 
Applications, pp. 32-36, 2011. Article (CrossRef Link) 

[12] P. Vorst and A. Zell, “Semi-autonomous learning of an RFID sensor model for mobile robot 
self-localization,” in Proc. of the European Robotics Symposium, pp. 273-282, 2008. 
Article (CrossRef Link) 

[13] D. Joho,  C. Plagemann and W. Burgard, “Modeling RFID signal strength and tag detection for 
localization and mapping,” in Proc. of the 2009 IEEE International Conference on Robotics and 
Automation (ICRA 2009), pp. 1213-1218, 2009. Article (CrossRef Link) 

[14] J. Hightower, R. Want, and G. Borriello, “Spot ON: An indoor 3D location sensing technology 
based on RF signal strength,” UW CSE, Washington USA, Tech. Rep. 2000-02-02, Feb. 18, 2000. 
Article (CrossRef Link) 

[15] X. Wu, F. M. Deng and Z. B. Chen, “RFID 3D-LANDMARC Localization Algorithm Based on 
Quantum Particle Swarm Optimization,” Electronics, vol. 7, no. 2, pp. 19, 2018. 
Article (CrossRef Link) 

https://ieeexplore.ieee.org/document/7174948
https://ieeexplore.ieee.org/document/7762095
https://ieeexplore.ieee.org/document/7932184
https://ieeexplore.ieee.org/document/7989660
https://ieeexplore.ieee.org/document/8227641
https://ieeexplore.ieee.org/document/7906582
https://ieeexplore.ieee.org/document/7906582
https://www.researchgate.net/publication/322601037_Smartphone-Based_Cooperative_Indoor_Localization_with_RFID_Technology
https://dl.acm.org/citation.cfm?id=2810710.2810779
https://ieeexplore.ieee.org/document/6696561
https://ieeexplore.ieee.org/document/7018022
https://ieeexplore.ieee.org/document/6068612?arnumber=6068612
https://www.researchgate.net/publication/221229914_Semi-autonomous_Learning_of_an_RFID_Sensor_Model_for_Mobile_Robot_Self-localization
https://ieeexplore.ieee.org/document/5152372
https://www.researchgate.net/publication/228541557_SpotON_An_Indoor_3D_Location_Sensing_Technology_Based_on_RF_Signal_Strength
https://www.mdpi.com/2079-9292/7/2/19


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 1, January 2020                                    145 

[16] A. P. Sample, C. Macomber, L. T. Jiang, and J. R. Smith, “Optical localization of passive UHF 
RFID tags with integrated LEDs,” in Proc. of the IEEE International Conference on RFID, pp. 
116-123, 2016. Article (CrossRef Link) 

[17] K. Rohweder and P. Vorst and A. Zell, “Improved Mapping of RFID Tags by Fusion with Spatial 
Structure,” in Proc. of the 4th European Conf. on Mobile Robots (ECMR 2009), pp. 247–252, 2009. 
Article (CrossRef Link) 

[18] T. Deyle, M. S. Reynolds, and C. C. Kemp, “Finding and Navigating to Household Objects with 
UHF RFID Tags by Optimizing RF Signal Strength,” in Proc. of the 2014 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS 2014), pp. 2457-2586, 2014. 
Article (CrossRef Link) 

[19] R. Liu, G. Huskic, and A. Zell, “Dynamic objects tracking with a mobile robot using passive UHF 
RFID tags,” in Proc. of the 2014 IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS 2014), pp. 4247-4252, 2014. Article (CrossRef Link) 

[20] Y. L. Fu, C. L. Wang, R. Liu, G. L. Liang, H. Zhang and S. U. Rehman, “Moving Object 
Localization Based on UHF RFID Phase and Laser Clustering,” Sensors, vol. 18, no. 3, pp. 825, 
Mar, 2018. Article (CrossRef Link) 

[21] M. Scherhaufl, M. Pichler, E. Schimback, D. J. Muller, and A. Ziroff , “Indoor Localization of 
Passive UHF RFID Tags Based on Phase-of-Arrival Evaluation,” IEEE Transactions on 
Microwave Theory & Techniques, vol. 61, no. 12, pp. 4724-4729, Dec, 2013.  

[22] Z. N. Chen, X. Qing, “Antennas for RFID applications,” in Proc. of International Workshop on 
Antenna Technology, pp. 273-282, 2010. Article (CrossRefLink) 

[23] Z. N. Chen, X. Qing, H. L. Chung, “A Universal UHF RFID Reader Antenna,” IEEE Transactions 
on Microwave Theory and Techniques, vol. 57, no. 5, pp. 1275-1282,  2009. 
Article (CrossRefLink) 

[24] X. Qing, C. K. Goh, Z. N. Chen, “Segmented loop antenna for UHF near-field RFID applications,”  
Electronics Letters, vol. 45, no. 17, pp. 872-873,  2009. Article (CrossRefLink) 

[25] X. Qing , Z. N. Chen, “Characteristics of a Metal-Backed Loop Antenna and its Application to a 
High-Frequency RFID Smart Shelf,” IEEE Antennas and Propagation Magazine, vol. 51, no. 2, pp. 
26-38,  2009. Article (CrossRefLink) 

[26] M. Alibakhshi-Kenari, M. Naser-Moghadasi, R. Sadeghzadeh, “The resonating MTM-based 
miniaturized antennas for wide-band RF-microwave systems,” Microwave and Optical 
Technology Letters, vol. 57, no. 10, pp. 2339-2344,  2015. Article (CrossRefLink) 

[27] M. Alibakhshi-Kenari, M. Naser-Moghadasi, R. Ali Sadeghzadeh, B. S. Virdee and E. Limiti, 
“Dual-band rfid tag antenna based on the hilbert-curve fractal for hf and uhf applications,”  IET 
Circuits, Devices & Systems, vol. 10, no. 2, pp. 140 -146, 2016. Article (CrossRefLink)  

[28] M. Alibakhshi-Kenari, M. Naser-Moghadasi, “Novel UWB miniaturized integrated antenna based 
on CRLH metamaterial transmission lines,” AEU - International Journal of Electronics and 
Communications, vol. 69, no. 8, pp. 1143-1149, 2015. Article (CrossRefLink) 

[29] M. Alibakhshi-Kenari, M. Movahhedi, H. Naderian, “A new miniature ultra wide band planar 
microstrip antenna based on the metamaterial transmission line,” in Proc. of the Applied 
Electromagnetics, IEEE, 2012. Article (CrossRefLink) 

[30] M. Alibakhshi-Kenari, E. Limiti, M. Naser-Moghadasi, “A New Wideband Planar Antenna with 
Band-Notch Functionality at GPS, Bluetooth and WiFi Bands for Integration in Portable Wireless 
Systems,” AEU - International Journal of Electronics and Communications, vol.72, pp. 79-85, 
2017. Article (CrossRefLink) 

[31] R. A. Sadeghzadeh, M. Alibakhshi-Kenari,  M. Naser-Moghadasi, “UWB antenna based on 
SCRLH-TLs for portable wireless devices,” Microwave and Optical Technology Letters, vol. 58, 
no. 1, pp. 69-71, 2016. Article (CrossRefLink) 

https://ieeexplore.ieee.org/document/6193038
https://www.researchgate.net/publication/221216161_Improved_Mapping_of_RFID_Tags_by_Fusion_with_Spatial_Structure
https://ieeexplore.ieee.org/document/6942914
https://ieeexplore.ieee.org/document/6942914
https://ieeexplore.ieee.org/document/6943161
https://www.researchgate.net/publication/323668526_Moving_object_localization_based_on_UHF_RFID_phase_and_laser_clustering
https://www.researchgate.net/publication/224138327_Antennas_for_RFID_applications
https://www.researchgate.net/publication/224397392_A_universal_UHF_RFID_reader_antenna
https://www.researchgate.net/publication/224579567_Segmented_loop_antenna_for_UHF_near-field_RFID_applications
https://www.researchgate.net/publication/224561879_Characteristics_of_a_Metal-Backed_Loop_Antenna_and_its_Application_to_a_High-Frequency_RFID_Smart_Shelf
https://www.researchgate.net/publication/280913569_The_resonating_MTM-based_miniaturized_antennas_for_wide-band_RF-microwave_systems
https://ieeexplore.ieee.org/document/7438524
https://www.researchgate.net/publication/276152886_Novel_UWB_Miniaturized_Integrated_Antenna_Based_on_CRLH_Metamaterial_Transmission_Lines
https://www.researchgate.net/publication/261420598_A_new_miniature_ultra_wide_band_planar_microstrip_antenna_based_on_the_metamaterial_transmission_line
https://www.researchgate.net/publication/311244841_A_New_Wideband_Planar_Antenna_with_Band-Notch_Functionality_at_GPS_Bluetooth_and_WiFi_Bands_for_Integration_in_Portable_Wireless_Systems
https://www.researchgate.net/publication/284812539_UWB_antenna_based_on_SCRLH-TLs_for_portable_wireless_devices


146                                                                        Liang et al.: An Innovative Approach to Track Moving Object based 
on RFID and Laser Ranging    Information 

[32] E. Limiti, M. Alibakhshi-Kenari, “Periodic array of complementary artificial magnetic conductor 
metamaterials-based multiband antennas for broadband wireless transceivers,” IET Microwaves, 
Antennas & Propagation, vol. 10, no. 15, pp. 1682-1691, 2016. Article (CrossRefLink) 

[33] A. Alu, F. Bilotti, N. Engheta , “Subwavelength, Compact, Resonant Patch Antennas Loaded With 
Metamaterials,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 1 pp.13-25, 2007. 
Article (CrossRefLink) 

[34] C. J. Lee, K. M. K. H. Leong, T . Itoh, “Composite right/left-handed transmission line based 
compact resonant antennas for RF module integration,” IEEE Transactions on Antennas and 
Propagation, vol. 54, no. 8, pp. 2283-2291, 2006. Article (CrossRefLink) 

[35] M. Przybyla, “Detection and tracking of 2D geometric obstacles from LRF data,” in Proc. of the 
IEEE International Workshop on Robot Motion and Control, pp. 135-141, 2017.  
Article (CrossRef Link) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gaoli Liang obtained her bachelor’s degree from the Southwest University of Science and 
Technology, Mianyang, China, in 2012. She is now working as a master student at the same 
university. She is interested in RFID tracking and mobile robot localization.   
 
 
 
 
 
 

 
 

Ran Liu received the Ph.D. degree from the University of Tuebingen, Germany, in 2014. 
Since then, he has been a Post-Doctoral Research Fellow at Singapore University of 
Technology and Design. He is an associate professor at the Southwest University of Science 
and Technology. He is interested in robotics, SLAM, indoor positioning, UHF RFID 
localization, and mapping.  
 
 
 
 
 

 
 
Yulu Fu received the bachelor’s degree from the Southwest University of Science and 
Technology, Mianyang, China, in 2012. She is now a master student at the same university. 
Her research interests include RFID positioning and object tracking.  
 
 
 
 
 

http://www.researchgate.net/publication/303905556_Periodic_Array_of_Complementary_Artificial_Magnetic_Conductor_Metamaterials-Based_Multiband_Antennas_for_Broadband_Wireless_Transceivers
http://www.researchgate.net/publication/3018934_Subwavelength_Compact_Resonant_Patch_Antennas_Loaded_With_Metamaterials
https://www.researchgate.net/publication/3018709_Composite_RightLeft-Handed_Transmission_Line_Based_Compact_Resonant_Antennas_for_RF_Module_Integration
https://www.researchgate.net/publication/319051656_Detection_and_tracking_of_2D_geometric_obstacles_from_LRF_data


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 1, January 2020                                    147 

 
Hua Zhang is a professor at the Southwest University of Science and Technology since 
2010. He received the Ph.D. degree from Chongqing University, China, in 2006. He was a 
visiting professor in Texas A&M University, America from 2010 to 2011. His research 
interests include mobile robot and embedded technology.  
 
 
 
 
 
 

 
Heng Wang is a professor at the Southwest University of Science and Technology since 
2011. She obtained the master degree from Chongqing University, China, in 1999. She was a 
visiting researcher of Tohoku University in 2004. Her research interests include mobile robot 
localization and mapping.  
 
 
 
 
 

 
 

Shafiq ur Rehman is currently a PhD student in School of Information Engineering, 
Southwest University of Science and Technology, China. He has been a lecturer in 
Department of Computer Science, Lasbela University of Agriculture, Water & Marine 
Sciences(LUAWMS), Pakistan since 2012. In 2005, he has completed his master in Software 
Engineering from COMSATS Institute of Information Technology, Pakistan. He worked for 
Ovex Technologies, USA as a Programmer and System Analyst from 2005 to 2008. He 
worked in Avenir Technologies, Pakistan as Senior Software Engineer from 2008 to 2011. 
His research interest includes localization and tracking of robots through RFID and other 
technologies.  

 
 

Mingming Guo obtained his bachelor’s degree from the Southwest University of Science 
and Technology, Mianyang, China, in 2012. He is currently a master student at the same 
university. His research interests include manipulator motion planning and control. 
 


