DOI QR코드

DOI QR Code

TOA-Based Ranging Method using CRS in LTE Signals

LTE 신호의 CRS를 이용한 TOA 기반 거리 측정 방법

  • Kang, Taewon (School of Integrated Technology, Yonsei University) ;
  • Lee, Halim (School of Integrated Technology, Yonsei University) ;
  • Seo, Jiwon (School of Integrated Technology, Yonsei University)
  • 강태원 (연세대학교 글로벌융합공학부) ;
  • 이하림 (연세대학교 글로벌융합공학부) ;
  • 서지원 (연세대학교 글로벌융합공학부)
  • Received : 2019.09.25
  • Accepted : 2019.10.24
  • Published : 2019.10.31

Abstract

In this paper, a new algorithm for the calculation of the range between an LTE base station (BS) and a user equipment (UE) using time-of-arrival (TOA) measurements of LTE signals is proposed. First, the cell identity (cell ID) of the received signal is acquired using the primary synchronization signal (PSS) and secondary synchronization signal (SSS) to identify the BS transmitted the signal. The proposed algorithm exploits the cell-specific reference signal (CRS), the reference sequence inserted in commercial LTE signals, to estimate the time delay using 2D cross-correlation. The obtained TOA estimations can be used to calculate the range employed from the known BS location. The performance of the proposed algorithm is evaluated with the experiment performed using real LTE signals transmitted from the commercial BS.

본 논문에서는 LTE 기지국 (BS; base station)과 단말기 (UE; user equipment) 간의 거리를 신호 도달 시간 (TOA; time-of-arrival)을 이용해 계산하는 알고리즘을 소개하였다. 먼저, 수신된 신호를 발신한 기지국을 판별하기 위해 primary synchronization signal (PSS)와 secondary synchronization signal (SSS)를 이용하여 셀 아이디를 취득하였다. 제시된 알고리즘에서는 상용 LTE 신호에 포함된 기준 시퀀스인 cell-specific reference signal (CRS)를 구축된 자원 그리드에서의 2차원 상호 상관을 통해 지연 시간을 계산하였다. 지연 시간의 변화는 신호 도달 시간의 변화로 계산되어 알려진 BS의 위치로부터 UE와의 거리를 계산하는 과정에 사용할 수 있다. 제시된 알고리즘의 성능은 실제 환경에서의 상용 LTE 신호를 이용한 거리 계산 실험에 사용되어 평가되었다.

Keywords

References

  1. P. Misra and P. Enge, Global Positioning System: Signals, Measurements, and Performance, Revised 2nd ed. Lincoln, MA: Ganga-Jamuna Press, 2011.
  2. M. Kim, J. Seo, and J. Lee, “A comprehensive method for GNSS data quality determination to improve ionospheric data analysis,” Sensors, Vol. 14, No. 8, pp. 14971-14993, Aug. 2014. https://doi.org/10.3390/s140814971
  3. J. Seo and T. Walter, “Future dual-frequency GPS navigation system for intelligent air transportation under strong ionospheric scintillation,” IEEE Transactions on Intelligent Transportation Systems, Vol. 15, No. 5, pp. 2224-2236, Apr. 2014. https://doi.org/10.1109/TITS.2014.2311590
  4. J. Seo, T. Walter, T. Y. Chiou, J. Blanch, and P. Enge, "Evaluation of deep signal fading effects due to ionospheric scintillation on GPS aviation receivers," in Proceedings of the ION GNSS 2008, Savannah: GA, pp. 2397-2404, Sep. 2008.
  5. T.-Y. Chiou, J. Seo, T. Walter, and P. Enge, "Performance of a Doppler-aided GPS navigation system for aviation applications under ionospheric scintillation," in Proceedings of the ION GNSS 2008, Savannah: GA, pp. 490-498, Sep. 2008.
  6. T. Kos, I. Markezic, and J. Pokrajcic, "Effects of multipath reception on GPS positioning performance," in Proceedings of the ELMAR-2010, Zadar, Croatia, pp. 399-402, Sep. 2010.
  7. K. Park, D. Lee, and J. Seo, "Dual-polarized GPS antenna array algorithm to adaptively mitigate a large number of interference signals," Aerospace Science and Technology, Vol. 78, pp. 387-396, Jul. 2018. https://doi.org/10.1016/j.ast.2018.04.029
  8. E. Kim and J. Seo, “SFOL pulse: A high accuracy DME pulse for alternative aircraft position and navigation,” Sensors, Vol. 17, No. 10, pp. 2183-2196, Sep. 2017. https://doi.org/10.3390/s17102183
  9. F. Cappello, S. Ramasamy, and R. Sabatini, "A low-cost and high performance navigation system for small RPAS applications," Aerospace Science and Technology, Vol. 58, pp. 529-545, Nov. 2016. https://doi.org/10.1016/j.ast.2016.09.002
  10. P. W. Son, J. H. Rhee, J. Hwang, and J. Seo, “Universal kriging for Loran ASF map generation,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 55, No. 4, pp. 1828-1842, Oct. 2018. https://doi.org/10.1109/taes.2018.2876587
  11. P. W. Son, J. H. Rhee, and J. Seo, “Novel multichain-based Loran positioning algorithm for resilient navigation,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, No. 2, pp. 666-679, Apr. 2018. https://doi.org/10.1109/TAES.2017.2762438
  12. V. Moghtadaiee, S. Lim, and A. G. Dempster, "System-level considerations for signal-of-opportunity positioning," in Proceedings of the International Symposium on GPS/GNSS, Taipei: Taiwan, Oct. 2010.
  13. A. R. Jimenez, F. Zampella, and F. Seco, "Lightmatching: A new signal of opportunity for pedestrian indoor navigation," in Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Montbeliard-Belfort: France, pp. 1-10, Oct. 2013.
  14. J. Raquet and R. K. Martin, "Non-GNSS radio frequency navigation," in Proceedings of IEEE Int. Conf. Acoust., Speech Signal Processing, Las Vegas: NV, pp. 5308-5311, Apr 2008.
  15. L. Merry, R. Faragher, and S. Schedin, "Comparison of opportunistic signals for localisation," in Proceedings of the 7th IFAC Symp. Intelli. Auto. Vehicles, Lecce: Italy, pp. 109-114, Jan. 2010
  16. J. A. del Peral-Rosado, J. A. Lopez-Salcedo, G. Seco-Granados, F. Zanier and M. Crisci, "Achievable localization accuracy of the positioning reference signal of 3GPP LTE," in Proceedings of the 2012 International Conference on Localization and GNSS, Starnberg: Germany, pp. 1-6, Jun. 2012.
  17. P. Thevenon, D. Serant, O. Julien, C. Macabiau, M. Bousquet, L. Ries, and S. Corazza, “Positioning using mobile TV based on the DVB-SH standard,” Navigation, Vol. 58, No. 2, pp. 71-90, Jun. 2011. https://doi.org/10.1002/j.2161-4296.2011.tb01793.x
  18. J. I. Kim, J. S. Han, H. J. Roh, and H. J. Choi, "SSS detection method for initial cell search in 3GPP LTE FDD/TDD dual mode receiver," in Proceedings of the 9th International Symposium on Communications and Information Technology, Incheon: Korea, pp. 199-203, 2009.
  19. T. Kang and J. Seo, "Simulation study on the limited number of received signals for LTE-based positioning," in Proceedings of the 2018 KONI Conference, Seoul: Korea, pp. 152-154, Nov. 2018
  20. K. Shamaei, J. Khalife, and Z. M. Kassas, "Comparative results for positioning with secondary synchronization signal versus cell specific reference signal in LTE systems," in Proceedings of ION ITM Conference, San Diego: CA, pp. 1-13, Jan. 2017.
  21. M. Driusso, C. Marshall, M. Sabathy, F. Knutti, H. Mathis, and F. Babich, “Vehicular position tracking using LTE signals,” IEEE Transactions on Vehicular Technology, Vol. 66, No. 4, pp. 3376-3391, Apr. 2017. https://doi.org/10.1109/TVT.2016.2589463
  22. M. Ulmschneider and C. Gentner, "Multipath assisted positioning for pedestrians using LTE signals," in Proceedings of IEEE/ION Position, Location, Navigation Symposium, Savannah: GA, pp. 386-392, Apr. 2016.
  23. J. A. del Peral-Rosado, J. A. Lopez-Salcedo, G. Seco-Granados, F. Zanier, P. Crosta, R. Ioannides and M. Crisci, "Software-defined radio LTE positioning receiver towards future hybrid localization systems," in Proceedings of the 31st AIAA International Communications Satellite Systems Conference, Florence: Italy, pp. 14-17, Oct. 2013.
  24. J. A. del Peral-Rosado, J. M. Parro-Jimenez, J. A. Lopez-Salcedo, G. Seco-Granados, P. Crosta, F. Zanier and M. Crisci, "Comparative results analysis on positioning with real LTE signals and low-cost hardware platforms," in Proceedings of the 7th ESA Satellite Naviagtion Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), Noordwijk: The Netherlands, pp. 1-8, Dec. 2014.
  25. Evolved Universal Terrestrial Radio Access (E-UTRA) (2011, January). Physical Channels and Modulation, document TS 36.211, 3rd Generation Partnership Project [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/36211.htm
  26. T. Kang, H. Lee, and J. Seo, "Analysis of the maximum correlation peak value and RSRQ in LTE signals according to frequency bands and sampling frequencies," in Proceedings of 19th International Conference on Control, Automation and Systems (ICCAS 2019), Jeju: Korea, Oct. 2019.
  27. K. Shamaei, J. Khalife, and Z. M. Kassas, "Exploiting LTE signals for navigation: Theory to implementation," IEEE Transactions on Wireless Communications, Vol. 17, pp. 2173-2189, Jan. 2018. https://doi.org/10.1109/TWC.2018.2789882
  28. S. Fischer, Observed time difference of arrival (OTDOA) positioning in 3GPP LTE, Qualcomm, San Diego: CA, USA, White Paper, Jun. 2014.
  29. F. Knutti, M. Sabathy, M. Driusso, H. Mathis, and C. Marshall, "Positioning using LTE signals," in Proceedings of Navigation Conference in Europe, Bordeau: France, pp. 1-8, Apr. 2015.

Cited by

  1. The Power Amplifier Control Design of eLoran Transmitter vol.10, pp.3, 2021, https://doi.org/10.11003/jpnt.2021.10.3.229