• Title/Summary/Keyword: Random sample

Search Result 1,024, Processing Time 0.028 seconds

Lane Detection Using Gaussian Function Based RANSAC (가우시안 함수기반 RANSAC을 이용한 차선검출 기법)

  • Choi, Yeongyu;Seo, Eunyoung;Suk, Soo-Young;Park, Ju H.;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.4
    • /
    • pp.195-204
    • /
    • 2018
  • Lane keeping assist and departure prevention system are the key functions of ADAS. In this paper, we propose lane detection method which uses Gaussian function based RANSAC. The proposed method consists mainly of IPM (inverse perspective mapping), Canny edge detector, and Gaussian function based RANSAC (Random Sample Consensus). The RANSAC uses Gaussian function to extract the parameters of straight or curved lane. The proposed RANSAC is different from the conventional one, in the following two aspects. One is the selection of sample with different probability depending on the distance between sample and camera. Another is the inlier sample score that assigns higher weights to samples near to camera. Through simulations, we show that the proposed method can achieve good performance in various of environments.

The Convergence Characteristics of The Time- Averaged Distortion in Vector Quantization: Part I. Theory Based on The Law of Large Numbers (벡터 양자화에서 시간 평균 왜곡치의 수렴 특성 I. 대수 법칙에 근거한 이론)

  • 김동식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.107-115
    • /
    • 1996
  • The average distortio of the vector quantizer is calcualted using a probability function F of the input source for a given codebook. But, since the input source is unknown in geneal, using the sample vectors that is realized from a random vector having probability function F, a time-average opeation is employed so as to obtain an approximation of the average distortion. In this case the size of the smple set should be large so that the sample vectors represent true F reliably. The theoretical inspection about the approximation, however, is not perfomed rigorously. Thus one might use the time-average distortion without any verification of the approximation. In this paper, the convergence characteristics of the time-average distortions are theoretically investigated when the size of sample vectors or the size of codebook gets large. It has been revealed that if codebook size is large enough, then small sample set is enough to obtain the average distortion by approximatio of the calculated tiem-averaged distortion. Experimental results on synthetic data, which are supporting the analysis, are also provided and discussed.

  • PDF

ESTIMATING THE CORRELATION COEFFICIENT IN A BIVARIATE NORMAL DISTRIBUTION USING MOVING EXTREME RANKED SET SAMPLING WITH A CONCOMITANT VARIABLE

  • AL-SALEH MOHAMMAD FRAIWAN;AL-ANANBEH AHMAD MOHAMMAD
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.2
    • /
    • pp.125-140
    • /
    • 2005
  • In this paper, we consider the estimation of the correlation coefficient in the bivariate normal distribution, based on a sample obtained using a modification of the moving extreme ranked set sampling technique (MERSS) that was introduced by Al-Saleh and Al-Hadhrami (2003a). The modification involves using a concomitant random variable. Nonparametric-type methods as well as the maximum likelihood estimation are considered under different settings. The obtained estimators are compared to their counterparts that are obtained based simple random sampling (SRS). It appears that the suggested estimators are more efficient

Comparison of Some Nonparametric Statistical Inference for Logit Model (로짓모형의 비모수적 추론의 비교)

  • 정형철;김대학
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.355-366
    • /
    • 2002
  • Nonparametric statistical inference for the parameter of logit model were examined. Usually nonparametric approach is milder than parametric approach based on normal theory assumption. We compared the two nonparametric methods for legit model, the bootstrap and random permutation in the sense of coverage probability. Monte Carlo simulation is conducted for small sample cases. Empirical power of hypothesis test and coverage probability for confidence interval estimation were presented for simple and multiple legit model respectively. An example were also introduced.

THE CONTINUOUS DENSITY FUNCTION OF THE LIMITING SPECTRAL DISTRIBUTION

  • Choi, Sang-Il
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.515-521
    • /
    • 2010
  • In multivariate analysis, the inversion formula of the Stieltjes transform is used to find the density of a spectral distribution of random matrices of sample covariance type. Let $B_n\;=\;\frac{1}{N}Y_nY_n^TT_n$ where $Y_n\;=\;[Y_{ij}]_{n\;{\times}\;N}$ is with independent, identically distributed entries and $T_n$ is an $n\;{\times}\;n$ symmetric non-negative definite random matrix independent of the $Y_{ij}$'s. In the present paper, using the inversion formula of the Stieltjes transform, we will find that the limiting distribution of $B_n$ has a continuous density function away from zero.

Methods of Random Signal Detection with Rank Statistics : Part I. The One-Sample Case (순위 통계량으로 확률 신호를 검파하는 방법 : 제 1 부. 한 표본을 쓸때)

  • 송익호;오택상;엄태상;한영옥
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.3
    • /
    • pp.284-290
    • /
    • 1991
  • A detection scheme wiich has based in rank statistic is obtained for detection of random signals in additive noise. It is shown that the detector has similarities to the locally optimum detector for random signals and that it is a generalization of the locally optimum rank detector for known signals. Performance of the detector is also considered together with that of other detectors.

  • PDF

THE INVERSION FORMULA OF THE STIELTJES TRANSFORM OF SPECTRAL DISTRIBUTION

  • Choi, Sang-Il
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.519-524
    • /
    • 2009
  • In multivariate analysis, the inversion formula of the Stieltjes transform is used to find the density of a spectral distribution of random matrices of sample covariance type. Let $B_{n}\;=\;\frac{1}{n}Y_{m}^{T}T_{m}Y_{m}$ where $Ym\;=\;[Y_{ij}]_{m{\times}n}$ is with independent, identically distributed entries and $T_m$ is an $m{\times}m$ symmetric nonnegative definite random matrix independent of the $Y_{ij}{^{\prime}}s$. In the present paper, using the inversion formula of the Stieltjes transform, we will find the density function of the limiting distribution of $B_n$ away from zero.

  • PDF

COMPARISON STUDY OF BIVARIATE LAPLACE DISTRIBUTIONS WITH THE SAME MARGINAL DISTRIBUTION

  • Hong, Chong-Sun;Hong, Sung-Sick
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.1
    • /
    • pp.107-128
    • /
    • 2004
  • Bivariate Laplace distributions for which both marginal distributions and Laplace are discussed. Three kinds of bivariate Laplace distributions which are extended bivariate exponential distributions of Gumbel (1960) are introduced in this paper. These symmetrical distributions are compared with asymmetrical distributions of Kotz et al. (2000). Their probability density functions, cumulative distribution functions are derived. Conditional skewnesses and kurtoses are also defined. Their correlation coefficients are calculated and compared with others. We proposed bivariate random vector generating methods whose distributions are bivariate Laplace. With sample means and medians obtained from generated random vectors, variance and covariance matrices of means and medians are calculated and discussed with those of bivariate normal distribution.

Restricted maximum likelihood estimation of a censored random effects panel regression model

  • Lee, Minah;Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.4
    • /
    • pp.371-383
    • /
    • 2019
  • Panel data sets have been developed in various areas, and many recent studies have analyzed panel, or longitudinal data sets. Maximum likelihood (ML) may be the most common statistical method for analyzing panel data models; however, the inference based on the ML estimate will have an inflated Type I error because the ML method tends to give a downwardly biased estimate of variance components when the sample size is small. The under estimation could be severe when data is incomplete. This paper proposes the restricted maximum likelihood (REML) method for a random effects panel data model with a censored dependent variable. Note that the likelihood function of the model is complex in that it includes a multidimensional integral. Many authors proposed to use integral approximation methods for the computation of likelihood function; however, it is well known that integral approximation methods are inadequate for high dimensional integrals in practice. This paper introduces to use the moments of truncated multivariate normal random vector for the calculation of multidimensional integral. In addition, a proper asymptotic standard error of REML estimate is given.

A Sample Design for National Nutrition Servey (국민영양조사(國民營養調査)를 위한 표본설계(標本設計) 소고(小考))

  • Jun, Tae-Yoon;Chung, Kee-Hey
    • Journal of Nutrition and Health
    • /
    • v.17 no.3
    • /
    • pp.236-241
    • /
    • 1984
  • In order to make clear the relationship between sample design and sample survey in community, it was conducted research on sample design for National Nutrition Survey in 1983. In this paper it was tried to analize the data based on The Report of a Settled Population, 1981 conducted by National Bureau of Statistics Economic Planning Board. The sample was basically using stratified two-stage sampling with systematic sampling of Ban or Li as administrative unit. The population represents the whole nation excluding Jeju-do because of budget. The selection of sampling unit and sampling procedure was as follows. 1) Stratify the nation-wide area in 20 sections according to administrative districts. 2) Determine the sample size in each section according to equal proportional rate (1 / 8040) and to about 1,000 households in the sample. 3) Select the 25 sampling units by section according to households proportion. 4) Select the 10 households at random from each Ban or Li according to equal probability proportion as the final sampling unit. Using the procedure, it was sampled 1,000 households for National Nutrition Survey in 1983.

  • PDF