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ESTIMATING THE CORRELATION COEFFICIENT IN A
BIVARIATE NORMAL DISTRIBUTION USING MOVING
EXTREME RANKED SET SAMPLING WITH A
CONCOMITANT VARIABLE

MOHAMMAD FRAIWAN AL-SALEH!AND AHMAD MOHAMMAD
A1-ANANBEH!

ABSTRACT

In this paper, we consider the estimation of the correlation coefficient in
the bivariate normal distribution, based on a sample obtained using a modi-
fication of the moving extreme ranked set sampling technique (MERSS) that
was introduced by Al-Saleh and Al-Hadhrami (2003a). The modification in-
volves using a concomitant random variable. Nonparametric-type methods
as well as the maximum likelihood estimation are considered under differ-
ent settings. The obtained estimators are compared to their counterparts
that are obtained based simple random sampling (SRS). It appears that the
suggested estimators are more efficient

AMS 2000 subject classifications. Primary 62F10.
Keywords. Bivariate Normal Distribution, Correlation Coefficient, Simple Random Sam-

pling, Ranked Set Sampling, Moving Extreme Ranked Set Sampling, Concomitant Vari-
able.

1. INTRODUCTION

Ranked set sampling technique (RSS) was suggested by McIntyre (1952) for
estimating the means of pasture and forage yields. The procedure consists of
choosing randomly m sets of size m each. The elements in each set are judgment
ranked with respect to the variable of interest. Then, for ¢ = 1,...,m, the t*
judgment ranked unit from the ** set is chosen for actual quantification. The
set of these carefully chosen m units is called a RSS. The advantage of RSS over

SRS in estimating the population mean is well established. In practice, to avoid
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ranking errors the set size m should be small; a sample of larger size can be
obtained via the iterating of the procedure.

Many applications of RSS and its variations have been pointed out by authors.
Estimating the weights of browse and herbage in a pine -hardwood forest was
carried out, using RSS, by Halls and Dell (1966). Its application in seedling
counts was carried out by Evans (1967). The application of RSS for the estimation
of average length of bacterial cells was pointed out by Takahasi and Wakimoto
(1968). Al-Saleh and Al-Shrafat (2001) used RSS for the estimation of average
milk yields of sheep. Al-Saleh and Al-Omari (2002) used RSS for the estimation of
average yield of olives per tree. Stokes and Sager (1988) suggested the application
of RSS for consumer expenditure survey and consumer price index. The use of
RSS for Monte Carlo approximation of integrals was investigated by Al-Saleh and
Samawi (2000). For other application of RSS and some of its modification, see
Zheng and Al-Saleh (2002).

For one population mean u, McIntyre (1952) proposed the estimator

m

fRrss = # ZZX(zm)] )

k
j=11i=1

where, X(;.m); is the i order statistics of the i set in the j** cycle and k
is the number of cycles. Takahasi and Wakimoto (1968) established a rigorous
statistical foundation for the theory of ranked set sampling. They showed that
the efficiency of figgs with respect to the sample mean of a SRS of size m, X,
satisfies the following inequalities:

var(X) <Mt 1
var(fipss) — 2

1 <eff(pirss; X) =

Stokes (1977) studied RSS with concomitant variables. She assumed that
the variable of interest X has a linear relation with another variable Y. Stokes
(1980) introduced a modified ranked set sampling procedure in which only the
largest judgment (or the smallest) ranked unit is chosen for quantification. The
procedure was used to estimate the correlation coefficient of the bivariate normal
distribution using a concomitant variable. The method, denoted by ERSS, was
investigated further by Samawi et al (1996). It is noted that the procedure may
be appropriate to use for some distributions especially symmetric ones. One

problem with the procedure is that it lacks the balancing property inherited in
RSS.
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Moving extreme ranked set sampling (MERSS) as introduced by Al-Odat
and Al-Saleh (2001) and Al-Saleh and Al-Hadrami (2003a,b), is a modification
of RSS, that does not need a complete ranking, as for RSS, but only the lowest
or largest unit of sets of varied sizes are to be measured, assuming that they
can be detected visually. Its aim is to reduce the error of ranking, while keeping
some of the balancing behavior. This is achieved by varying the set size. Thus,
MERSS can be thought of as a compromise between the balanced RSS and the
unbalanced one in which only the two extremes of samples of fixed set sizes are
measured (ERSS). Stokes (1980) used ERSS for estimating the correlation of the
bivariate normal distribution. She noticed that the procedure may be highly non
robust to departure from bivariate normality.

Formally, MERSS can be described by the following steps:

1. Select m SRS of size 1,2,...,m, respectively.

2. Identify by judgment the maximum of each set with respect to the char-
acteristic of interest.

3. Measure accurately the selected judgment identified maxima.
4. Repeat steps 1 to 3, but for minima.
The above four steps produce an MERSS of size 2m.

5. Repeat the above steps r times, if necessary, until the desired sample size,
n = 2rm is achieved.

Note that to obtain a MERSS of size 2m, we need to identify m? +m units, while
we need to identify 2m? in the case of ERSS or usual RSS.

For more on recent work on RSS and its variations, see Al-Saleh and Al-Omari
(2002), Al-Saleh and Zheng (2002, 2003), Samawi and Al-Saleh (2004) and Al-
Saleh (2004), Patil et al., (1999) (a bibliography); Kour et al. (1995), Zheng and
Al-Saleh (2002, 2003) and Barabesi & Pisani (2004).

In this paper, we propose to use the MERSS with concomitant variable for
the estimation of the correlation coefficient of the bivariate normal distribution.

2. MERSS wiTH CONCOMITANT VARIABLE

Assume that (X,Y) has a bivariate normal distribution and suppose that
the variable Y is difficult to measure or to order by judgment, but the concomi-
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tant variable X, which is correlated with Y is easier to measure or to order by
judgment. The variable X may be used to acquire the rank of Y as follows:

a. Select m bivariate units using m SRS of sizes 1,2,...,m respectively.

b. Identify by judgment the maximum of each set with respect to the variable
X.

¢. Measure accurately the selected judgment identified units for both variables.
d. Repeat steps 1, 2, 3 but for the minimum.

e. Repeat the above steps r times, if necessary, until the desired sample size,
n = 2rm is obtained.

The n pairs are called a Moving Extremes Ranked Set Sampling (MERSS)
with concomitant variable.

Let X(;.) and Yj;4) be the ith smallest value of X and the corresponding value

of Y obtained from the k** sample, where i = 1,k and k = 1,2,...,m. Note that
Y[;.x) represent the " induced order statistic of a sample of size ; the stronger
the relation between X and Y, the closer Yj;.j to Y(;.4)-
Let (X,Y) be a bivariate normal random vector with density denoted by BN (g,
ty, 07,04, p). It is well known that, fxy(x,y) = fx(z)fy|x(y|X = x), where
fx(z) is the marginal pdf of X and fy|x(y|x) is the conditional pdf of (Y| X = z);
also (Y|X = z) ~ N(py + ploy/02)(z — pz), 55 (1 = p*)).

Let {(X k), Yien)» (X (kik) Yike))s kK = 1,2, .., m} be a MERSS from fx v (z,y)
If judgment ranking is as good as actual ranking, then for £k = 1,2,...,m,
(X(k:k)> Yir:k) and (X(x), Yjik)) have the densities fix(,y) and fix(z,y), Te-
spectively, given by:

Fiek(2,9) = FX gy (@) fy1x (y]2)
and

fre(@y) = Fxou (@) frix(ylz)
where fx,,, (z) is the density of the it order statistic of a SRS of size k from the
univariate normal distribution, i = [,k. fy,,, () and fy, (z) are the densities
of the corresponding induced rank of Y, see Yang 1977 and Stokes 1980.
Thus,

_ k—1 m_ﬂwi T — fg 1 y—>b
fklk(miy) =k® ( Ox )Uz¢( Os )O'y 1— p2¢(aym) (21)
i e T ekt L T — g 1 y—»b
fl:k("r’y) - k(l q)(—.—d;_)) Or ¢( Ox )Uy 1— p2 ¢(0ym)
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where b = p, + p(oy /o )(x — pz), ® & ¢ are, respectively, the cdf and pdf of the
standard normal density, N(0,1).

3. ESTIMATION

3.1. Method of Moments Estimator of p: All Other Parameters are Known

Let {(X:kys Yiikp)s (X(k:ik)» Yik:e)) 1 £ = 1,2, ... ,m be a MERSS from bivariate
normal distribution. We may assume WLOG that y; = p, = 0 and o2 = 05 =
1. The method of moments estimator of p can be obtained by equating the
population mixed moments to the sample mixed moments. Alternatively, we

may consider the estimator:
m
Priprss = ¢ O _[Xwwy X Yirw + Xewy X Yieay)-
k=1
THEOREM 3.1. P}, pres 15 an unbiased estimator of
1
23K E(Xfny)

PROOF. E[Xlk X Yh k]] = pE(Xlk)) and E[X(k:k X Yik k]] - pE(

pEec=

(i)

Also, since X(r.) has the same distribution as —X.4), E(X(,c k)) = E(X ., k))
Therefore,
m
E(prprss) =260 Y B(X{p)-
k=1
For to be unbiased we should have
o= 1
2 z;’?:l E(X(2kk))
a

Thus,
rrnss = D re1 [ X k) ><mY[z:k] + ;X(k:k) X Ykl
22 k1 BE(XGery)
is an unbiased estimator of p.
The corresponding unbiased estimator of p based on a SRS of size 2m is
Y XY Y
2m

A%
PSRS =
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TABLE 3.1 # of values of pyerss(Psrs) that are out side the interval [-1,1]

o — 0 0.2 0.4 0.6 0.8

m |
1 664(1358) | 1189(1468) | 1640(1809) | 2250(2363) | 2909(3000)
2 283(536) 640(750) | 1258(1283) | 2055(2066) | 3033(3060)
3 88(221) 332(432) 856(971) | 1786(1781) | 2913(2941)
4 21(98) 137(244) 551(727) | 1425(1597) | 2815(2827)
5 5(51) 57(118) 353(539) | 1062(1398) | 2593(2644)
6 1(24) 19(107) 188(410) 761(1176) | 2340(2598)
7 0(6) 9(58) 101(304) 631(1079) | 2126(2416)
8 0(5) 5(47) 47(231) 447(935) | 1999(2390)
9 0(1) 0(23) 32(179) 325(826) | 1737(2253)
10 0(2) 0(19) 17(153) 217(741) | 1538(2222)

Note that the estimator pj,;ppgs and pipg may take values (with positive
probability) out side [—1,1] and hence are inadmissible estimators. To overcome
this problem we may consider the following modified estimators:

-1 of Pmerss < —1
Prerss = § Purerss if —1<Pierss <1
1 if Pvmerss =1
and
-1 if pgpg < -1
psrs = § Psrs if —1< pPgps <1

1 if Pspg =1

The efliciency of these estimators can’t be put in closed form. So, we used
simulation to compare py;prss and Pgre. All computations are done using
Mathematica 4. The number of times that p};prss and ptrg are outside the
interval [—1, 1] with 10,000 iterations are given in Table 3.1.

It can be seen from Table 3.1 that the number of inadmissible values tends
to decrease in m for fixed |p| and to increase in |p| for fixed m. Thus, the two
estimators are not valid for large |p| or small m.

The efficiency p}fprgg W.I.t. PSRg is

Ak AXkK MSE(ﬁ** )
eff (PMERSS; PSrs) = MSE( ﬁ**SRZS) .
MER

Table 3.2 gives the numerical values of ef f(0}3igresi Pers)- Based on this
Table we conclude that the efficiency tends to decrease in |p| and to increase in
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TABLE 3.2 ef f(PMERSsS; PSRS)

p—| 0 02 | 04 | 06 | 08

m |
1 [1.00 097 | 1.01 | 1.02 | 0.99
2 1.01 { 1.01 | 1.02 | 1.00 | 1.01
3 1.04 | 1.09 | 1.07 | 1.03 | 1.06
4 1.16 | 1.15 | 1.15 | 1.14 | 1.13
5 131 {135 [ 1.25 | 1.19 | 1.26
6 143 1140 | 1.35 | 1.34 | 1.34
7 1.50 | 1.50 | 1.44 | 1.36 | 1.41
8 1.70 { 1.61 | 1.64 | 1.52 | 1.57
9 171 1 168 | 1.67 | 1.64 | 1.54
10 {188 (185185 | 1.79 { 1.69

m. Prrerss iS significantly more efficient than pglhg.

3.2. Mazimum Likelthood Estimator of p: Other Parameters are Known

The MLE of p can be found by solving the following equation for p:

0 0 i T(k:k) — Mo Ylkk] — M
. L* A P @ 2 . ( ]
3 (w) 3 {c —mlog(o, o) + ]; logg, 4 ( p , +

z Oy

m —_— —
S (k- 1) {,Og o (M) + log [1 _ & (_U_k)_“)] } +
k=1 Iz Ts

m
T:k) — Mz Yjk] — M
I )y =0,
x y

; g
=1

which is simplified to,

2mp ( 1+p2 ) m (Y[lk:] uy) (X(z::;)z—ﬂz)
3+ >

_ — p?)2 Yk —p X(k:k) M
) <1>k1(’:}”)(kax)

Y[z lc] yy ( (z:k)—uz)2
7
x =0
((1— k / ( (kk) Mm 2+(Y[k:k]—/~"y)2

Oy

WLOG, take u; = p, = 0 and 02 = ag = 1. Then the above ML equation is
simplified to
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TABLE 3.3 ef f(pmERSS; PSRS)

p — 0 0.2 04 0.6 0.8

m |
1 099 | 1.01 | 100 { 1.00 | 1.01
2 1.01 [ 0.98 | 1.01 | 0.99 | 0.97
3 1.05 { 1.05 | 1.08 | 1.12 | 1.05
4 114 | 1.16 | 1.19 | 1.22 | 1.10
5 125 | 1.24 { 1.35 | 1.35 | 1.08
6 1.35 | 1.40 | 144 | 142 | 1.12
7 1.57 | 1.55 | 1.58 | 1.45 | 1.16
8 164 ( 1.70 | 1.62 | 1.40 | 1.17
9 179 1 1757 1.70 | 141 ) 1.19
10 1.89 | 1.87 | 1.77 | 1.47 | 1.20

h(p) = 2mp(1l ~ p?) + (1 + p?) Z[(X(l:k))(y[l:k]) + (X)) Y] —

k=1
m
P Z[X(%:k) + X(Zk:k) + Y[121c1 + Y[izc;kl] =0 (3.1)
k=1 ~
Since the left hand side of the above equation is positive for p = —1 and negative

for p = 1; there must be always a real root between —1 and +1. Kendall and
Stuart (1963) showed that, the probability that the above equation has more
than one real root, tends to zero. In any specific case, however, it is possible to
have three roots between —1 and 1; The MLE should be the root that maximizes
the likelihood equation. Lets this root be denoted by prrerss-

For SRS, the MLE can be found(Johnson and Kotz 1972), by solving for p,
the cubic equation

h*(p) = 2mp(1 - p*) + (1 + p°) (ZX Y) —-p [Z(Xf +YH)l =0 (32

k=1

In order to study the properties of gy prss numerically, Equation 1 and 2
have been solved numerically with 30000 iterations. At each iteration, pmERSS
and pggrs are obtained and the MSE of each of them is approximated using these
30000 values. The results of the simulation are shown in Table 3.3. It can be seen
from this Table that The efficiency of ppprss w.r.t. psrsisequal 1 at m =1,2
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for all |p|. The slight discrepancy from 1 is due to sampling error; it tends to
increase in m for fixed |p| and to decrease in |p| for fixed m.

THEOREM 3.2. The Fisher information number about p in a MERSS of size
2m s given by

> ka2 (E(X(Zl:k)) + TQ‘_&;E)

IomERSS = 1= 2 .
PROOF.
0% . 2m(1 + p?) (20) | 4p(1+0%)
w0 =+ (T |
1 4p°
(= )
where,
v=>" (Y[zz:k] + Xy + Vi + X(2k:k))
k=1
Z= Z (Y X k) + Ve X ek
k=1
Thus,
_2m(1+p%) 20 4p(1 + p?)
IomERSS =~ (1= p2)2 (1—p2)2 " (1-p2)3 E(Z)
1 4p?
E .
* ((1 P2 - 02)3> V)
But,
E(Z)=2p7_ E(X{)
k=1
and m
E(V) =" (2B(X}) +2 - 261 - E(X})])
k=1
therefore,
2
25, (B(Xhy) + 227)
IymERSS = )

1—p?
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TABLE 3.4 Asymptotic Efficiency of pmERSs w.T.t. PsSRrs

p — | 0 02 | 04 | 06 | 08

m |
3 109 [ 108 [ 107 [ 104 | 1.02
4 1.21 | 119 | 1.15 | 1.10 | 1.05
5 133 [ 1.30 | 1.24 [ 1.15 | 1.07
6 144 | 141 ] 132 ] 1.21 | 1.10
7 1.55 ] 151 [ 1.40 | 1.26 | 1.12
8 166 | 1.61 | 1.48 | 1.31 | 1.14
9 1.76 { 170 | 1.55 | 1.36 | 1.17
10 [18 [ 179 ] 162 1.40 | 1.19

On the other hand, the Fisher information number for p in a SRS of size 2m
is
Fone o 2m(1+ p?)
pPSRS = (1—p2)2

n = 2rm, then the Fisher information in MERSS is rI,pgrss. Therefore, the
Asymptotic Efficiency (AE) of pprprss w.r.t. psgs is

2
IomERSS _ 2(1 - %) Z?:l{E(X(%;k)) + 1_2_1);2'}
Iosrs 2m(1 + p?)

Note that Ioperss > I,srs because Y o, E(X(zl:k)) >1form > 1. If

AE =

The Asymptotic Efficiency of w.r.t. is given in Table 3.4.

Based on Table 3.4, we conclude that the asymptotic efficiency of grsprss w.r.t.
Psrs is always greater than 1, decreasing in |p| for fixed m and is increasing in m
for fixed |p|. Thus, MERSS provides the most benefit over SRS when p is close
to zero.

3.3. Estimation of p: lz,02 are Knoun

When the concomitant variable X, can be ranked easily and accurately, it is
more reasonable to assume that y, and o2 are known than to assume that Iy
and 012/. Therefore, in this section we consider the MLE of p when u, and o2 are
known. The MLE’s of ,uy,ag , and p based on a SRS are given by Johnson and
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TABLE 3.5 The efficiency of pperss w.r.t. psrs

p — 0 0.2 04 0.6 0.8 | 0.95

m |

3 1.09 | 1.11 | 1.14 } 1.19 | 1.29 | 1.40
4 119 | 119 { 1.24 | 1.34 | 142 | 1.21
5 128 1 1.29 | 1.35 | 143 | 1.44 | 1.12
6

7

8

9

1.39 | 141 | 146 | 1.50 | 1.46 | 1.12
151 | 1.51 | 1.54 | 1.57 | 1.42 | 1.08
165 | 1.67 | 1.67 | 1.67 | 1.47 | 1.10
1.77 | 1.76 | 1.76 | 1.69 | 1.44 | 1.11
10 186 | 1.83 | 1.82 | 1.71 | 1.47 | 1.17
20 261 | 253 | 234 | 1.99 | 1.53 | 1.08

Kotz (1972):

fiysrs =Y — TSy( ;HZ)
2
o
O'ySRs—Sy(l—T'z-}"f'z?;—) (3 3)
x
2

where

and

n Y (Xi—-X)(Yi-Y)

i=1

3.3,

If the sample is a MERSS, then the MLE’s of ,u,y,ag, and p can be easily
shown to be

r =

X — X -
fiyMERSS =Y — 18y ( 3 Mz) (3.4)
x
~2 2 2 2‘72
ayMERSS = Sy(l —-r°+r —S‘a) (35)
x
2
N _ (.92 2 20,1
PMERSS = (TS_z)(l —ri+r S—%) 2

where m m
3 b1 (Yewy + Yiger)) % Ek:l(X(l:k) + X(k:k))

Y =
2m ’ 2m

b
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2 _ S (Xary = X)2 4+ Xy — X)?)

Sx 2m ’
S2 — Z;cn=1((y[l:k] -Y)?+ (Y[k:k] -Y)?)
Y 2m

and

Cm) 1 3 (Ve — V) (X k) — X) + V) = V) (X ooy — X))
Table 3.5 gives the efficiency prprprss w.r.t. psrs. It can be seen from this

Table that pprprss is more efficient than pggs; the efficiency tends to decrease
in |p| for fixed m to increase in m for fixed |p|.

3.4. Estimation of p: All Parameters are Unknown

Suppose that piz, py, o2, 05 and p are all unknown. The MLE’s of the param-
eters based on a SRS are (Johnson and Kotz (1972)) g, = X, iy, = Y,62 =
S2 52 = Sg and p = r, where

2=
X:Ml V= Yic1Yi G2 — (X — X)?
n ! n ) z n

3

n X - X)(Yi-Y)
Sz Sy '
In the case of MERSS, the maximum likelihood equations are not easy to
deal with and don’t appear to be easily solvable even by numerical methods. As
suggested by one referee, an EM algorithm can be used to obtain the MLEs. For
more details about this approach, see Balakrishnan and Kim (2004).We provide
two options to deal with this problem. The first is similar to that given by Stokes
(1980). In this approach, we solve the ML equation pretending that u; and o2 are
known; then replacing them at the end with some suitable unbiased estimators.
The second option is based on the modified likelihood function. Now,

E(Xqx)) = pz + 0:E(Z(1.1))

n .___2
ggzw and r =
n

and

E(X(k:k)) = ta + 02 E(Z(k.1));
where k£ = 1,2,...,m and {Z(.), Z(k:x)} are respectively, the first and the kth
order statistics based on N(0,1). E(Zx)) = —E(Z(.x)) implies,

D1 (X k) + X(ek))
2m ’

fzMERSS =
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TABLE 3.6 The efficiency of pmerss w.m.t. pSrs

p— | 0 0.2 | 04 | 06 | 08

m |
1 1.00 | 1.00 | 1.01 | 1.00 | 0.97
2 0.96 | 0.98 | 0.98 | 1.01 | 1.01
3 1.01 §{ 1.03 | 1.05 | 1.11 | 1.18
4 1.09 | 1.10 | 1.14 | 1.19 | 1.31
5 117 | 115 1.22 | 1.32 | 1.46
6 1.26 { 1.29 | 1.37 | 1.45 | 1.55
7 138 | 1.38 [ 142 | 1.50 | 1.63
8 1.52 | 1.52 | 1.53 | 1.59 | 1.71
9 163 | 1.63 | 1.63 | 1.67 | 1.80
10 | 170 170 [ 1.73 | 1.74 | 1.78

is an unbiased estimator of u,. Similarly,
St (X ek — X))
2
I\ BZf) + S0 (B(Ze)’)

~2 _
OtMERSS =
2(

is an unbiased estimator of o2. Using equations (4), and (5), the estimators of
Ly 03 and p then become:

Y1t (Vi) + Yieey)
2m

fAyMERSS = ;
2 2 >, 202MERSsS
o T
Oymprss = Sy(1 —r" + 1" =505 )
T
and A 2
9zsMERSS 2, 2% MERSS\-1
—— (1 —r* 4 pr 2222 TS

S, ) 3 )

Note that 62,,5pgg is an option; of course there are other options. The main
purpose is to replace the unknown value of 02 with a suitable estimator for the
purpose of estimating p. So, our main concern is in the parameter p, not the
means or the variances. Table 3.6 gives the efficiency of pprerss W.r.t. psrs.

Based on Table 3.6 we conclude that gy grss is more efficient than psrs. The
efficiency of pprerss w.r.t. psrs is increasing in m for fixed |p| and increasing
in [p| for fixed m.

PMERSs = (T
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TABLE 3.7 The efficiency of pmmMmERSs w.T.t. Ppsrs

p—] 0 | 02] 04 06 08

m |
1 [ 100 [1.00]101]1.00] 097
2 | 100|101 1.02 | 1.04 | 1.08
3 | 101 | 1.03 | 1.04 | 1.15 | 1.31
4 099|103 108|123 147
5 | 096|098 | 1.09 | 1.27 | 1.68
6 | 096|099 | 1.11 | 1.30 | 1.66
7 098099 107 | 1.21 | 148
8 | 102|103 105 1.17 | 1.32
9 |1.02]100] 102 1.05 | 1.14
10 | 099|097 ] 0930920097

For the second approach, we use the same formulas of the MLE’s estimators
using SRS, with the SRS data replaced by MERSS:

BzmMERSS = X [iymMERss =Y
A2 _ Q2. A2 _ Q2. 4 _
GzmMERSS = 3 OymMERSS = Sy PmMERSS =T

These are called the modified MLE’s of g, yy, o2, ag and p. Table 3.7 gives the
efficiency of pumERSS W.r.t. psrs. Based on this Table we may conclude that
the efficiency of pmmERss W.I.t psrs. tends to increase in m for m < 6 and to
decrease in m for m < 6 when |p| > 0.4. It also tends to increase in |p| for fixed
m.

4. CONCLUDING REMARKS

MERSS with concomitant variable is a useful modification of RSS, that can
be used with bivariate data to estimate the correlation coefficient. The method
is easier to use in practice than the usual RSS procedure, because only one of the
two extremes is needed to be identified by judgment. It appears that the use of
MERSS with concomitant variable is highly beneficial when compared to SRS for
estimating the correlation coeflicient. No systematic investigation of robustness
to departure from bivariate normality has been undertaken, but we anticipate
that that MERSS procedure will be more robust than using the unbalanced RSS
with only measuring the two extremes, i.e., ERSS.
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