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TRANSFORM OF SPECTRAL DISTRIBUTION
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Abstract. In multivariate analysis, the inversion formula of the Stieltjes
transform is used to find the density of a spectral distribution of random
matrices of sample covariance type. Let Bn = 1

n
Y T

m TmYm where Ym =

[Yij ]m×n is with independent, identically distributed entries and Tm is an
m × m symmetric nonnegative definite random matrix independent of the
Yij ’s. In the present paper, using the inversion formula of the Stieltjes
transform, we will find the density function of the limiting distribution of
Bn away from zero.

1. Introduction

Let M be an m×m random matrix with real eigenvalues

{Λ1, Λ2, . . . , Λm}. Then the spectral distribution function of M is the dis-

tribution function FM (x) with a jump of 1
m at each eigenvalue defined by

∀x ∈ R, FM (x) =
1
m

m∑

i=1

1(−∞,x](Λi)

where 1S is the indicator function of the set S.

Let {Yij}i,j≥1 be independent, identically distributed. real-valued ran-

dom variables with E|Y11−EY11|2 = 1. For each m in N, the set of positive

integers, let Ym = [Yij ]m×n, where n = n(m) and m/n → c > 0 as m → +∞,

and let Tm be an m×m symmetric nonnegative definite random matrix in-

dependent of the Yij ’s for which there exists a sequence of positive numbers

{µk}k≥1 such that for each k ∈ N,
∫ +∞

0

xkdFTm(x) =
1
m

trT k
m → µk, almost surely, as m → +∞

Received June 24, 2009; Revised August 15, 2009; Accepted August 20, 2009.
2000 Mathematics Subject Classifications: Primary 60E99, 26A46.
Key words and phrases: eigenvalues of random matrices, spectral distribution, Stieltjes

transform.



520 Sang-Il Choi

where tr A means the trace of the matrix A and the µk’s satisfy Carleman’s

sufficiency condition, ∑

k≥1

µ
− 1

2k

2k = +∞,

for the existence and the uniqueness of the distribution function H having

moments {µk}k≥1.([4])

Let Bn = 1
nY T

m TmYm. We have a limit theorem found in [3,4].

Theorem 1.1. ([3, 4]) The limiting spectral distribution function F of

Bn is of the form

∀x ∈ R, F (x) = (1− c)1[0,∞)(x) + cF0(x),

where F0 is the limiting spectral distribution function of 1
nYmY T

m Tm with

moments

∀k ∈ N, νk =
k∑

w=1

ck−w
∑ k!

m1!m2! . . . mw!w!
µm1

1 . . . µmw
w

where the inner sum extends over all w-tuples of nonnegative integers (m1, . . . ,

mw) such that
∑w

j=1 mj = k − w + 1 and
∑w

j=1 jmj = k.

Moreover, F0 is continuous on R+, the set of positive real numbers, and

F is continuous away from 0.

Let C+ = {z ∈ C : c(z) > 0}. For z ∈ C+, the Stieltjes transform of F ,

m(z), is defined by,

m(z) =
∫

dF (λ)
λ− z

.

In [1], it is shown that, for each z ∈ C+, m = m(z) is the unique solution

for m ∈ C+ to the equation

m = −
(

z − c

∫
λdH(λ)
1 + λm

)−1

.

Therefore, on C+, m(z) has an inverse, z(m), given by

z(m) = − 1
m

+ c

∫
λdH(λ)
1 + λm

for m ∈ m(C+).

We can find the density function of F using Stieltjes transform of F . Here

is the main theorem. The proof is deferred to the end of Section 2.
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Theorem 1.2. For all x 6= 0, the density function of F is

f(x) = lim
y↓0

1
π

Im(m(x + iy)).

2. Stieltjes transform and inversion formula

Let G(·) be a distribution function and let S(·) be the Stieltjes transform

of G. Let SG be the support of G.

Theorem 2.1. For z ∈ C− SG, S(z) is a well-defined analytic function.

Moreover,

S′(z) =
∫

dG(λ)
(λ− z)2

.

Proof. Fix z0 ∈ C − SG. Since SG is closed, we have a ≡ inf{|λ − z0| :

λ ∈ SG} > 0.

Therefore, ∀λ ∈ R,
1SG(λ)
|λ− z0| ≤

1SG(λ)
a

and, since 1SG
(λ)

λ−z0
is bounded and measurable, its integral with respect to G

is well-defined.

For any z ∈ C−SG s.t. |z− z0| < a
2 and for λ ∈ SG, we have |λ− z| > a

2 ,

and
1SG(λ)

|(λ− z)(λ− z0)| ≤
1SG(λ)

a2

2

and, by the Dominated Convergence Theorem,

S(z)− S(z0)
z − z0

=
1

z − z0

(∫
1

λ− z
dG(λ)−

∫
1

λ− z0
dG(λ)

)

=
1

z − z0

∫
z − z0

(λ− z)(λ− z0)
dG(λ)

→
∫

1
(λ− z0)2

dG(λ) as z → z0.

Thus S′(z0) exists and is equal to
∫

1
(λ−z0)2

dG(λ).

Therefore, S(z) is analytic on C− SG. ¤
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Theorem 2.2 (Inversion Formula). For any λ1 < λ2,

1
2
(G(λ2) + G(λ−2 ))− 1

2
(G(λ1) + G(λ−1 )) = lim

y↓0
1
π

∫ λ2

λ1

Im(S(x + iy))dx,

where G(λ−) = limt↑λ G(t).

Proof. For z = x + iy, y > 0,

S(z) =
∫

λ− x

(λ− x)2 + y2
dG(λ) + i

∫
y

(λ− x)2 + y2
dG(λ).

Thus, from Fubini’s Theorem,

lim
y↓0

1
π

∫ λ2

λ1

Im(S(x + iy))dx

=
1
π

lim
y↓0

∫ λ2

λ1

∫
y

(λ− x)2 + y2
dG(λ)dx

=
1
π

lim
y↓0

∫
y

∫ λ2

λ1

1
(λ− x)2 + y2

dxdG(λ)

=
1
π

lim
y↓0

y

∫
1
y

(
− arctan

λ− x

y

∣∣∣∣
λ2

λ1

)
dG(λ)

=
1
π

lim
y↓0

∫ (
arctan

λ− λ1

y
− arctan

λ− λ2

y

)
dG(λ).

Let s(λ) = arctan λ−λ1
y − arctan λ−λ2

y . Then

lim
y↓0

s(λ) =





0 if λ < λ1,
π

2
if λ = λ1,

π if λ1 < λ < λ2,
π

2
if λ = λ2,

0 if λ2 < λ.

Therefore, by the Dominated Convergence Theorem,
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1
π

lim
y↓0

∫ λ2

λ1

Im(S(x + iy))dx

=
1
π

∫ (π

2
1{λ1}(λ) +

π

2
1{λ2}(λ) + π1(λ1,λ2)(λ)

)
dG(λ)

=
1
2
(G(λ1)−G(λ−1 ) + G(λ2)−G(λ−2 )) + G(λ−2 )−G(λ1)

=
1
2
(G(λ2) + G(λ−2 ))− 1

2
(G(λ1) + G(λ−1 )).

¤

We can calculate G from the Inversion Formula,

G(x2)−G(x1) = lim
y↓0

1
π

∫ x2

x1

Im(S(x + iy))dx

where x1 and x2 are continuity points of G.

Now we can find the density function of F .

Proof of Theorem 1.2. From the Inversion Formula, since F is continuous

away from 0, for all x1 6= 0, x2 6= 0,

F (x2)− F (x1) = lim
y↓0

1
π

∫ x2

x1

Im(m(x + iy))dx.

Therefore, for all x0 6= 0, the density function of F is

f(x0) = lim
x̄→x0

F (x̄)− F (x0)
x̄− x0

= lim
x̄→x0

1
x̄− x0

lim
y↓0

1
π

∫ x̄

x0

Im(m(x + iy))dx

= lim
y↓0

1
π

lim
x̄→x0

1
x̄− x0

∫ x̄

x0

Im(m(x + iy))dx

= lim
y↓0

1
π

Im(m(x0 + iy))

¤
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