• Title/Summary/Keyword: Random Vibration

Search Result 595, Processing Time 0.027 seconds

The effects of tube bundle geometry on vibration in two-phase cross-flow (2상 횡유동에서 열교환기 관군 배치에 다른 진동특성 고찰)

  • 김범식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.681-687
    • /
    • 2001
  • Two-phase cross-flow exists in many shell-tube heat exchangers such as steam generators, condensers and reboilers. An understanding of flow-induced vibration excitation mechanism is necessary to avoid problems due to excessive tube vibration. This paper presents the results of a series of experiments done on tube bundles of different geometries subjected to two-phase cross-flow simulated by air-water mixtures. Normal(30$^{\circ}$) and rotated (60$^{\circ}$)triangular, and normal(90$^{\circ}$) and rotated (45$^{\circ}$) square tube bundle configurations of pitch-to-diameter ratio of 1.2 to 1.5 were tested over a range of mass fluxes from 0 to 1,000kg/$m^2$ㆍ s and void fraction from 0 to 100%. The effects of tube bundle geometry on vibration excitation mechanism such as fluidelastic instability and random turbulence, and on dynamic parameters such as damping and hydrodynamic mass are discussed. A lower pitch-to-diameter results in a higher hydrodynamic mass. The effect of tube bundle configurations on damping and random turbulence excitation is minor. The effect of pitch-to-diameter on the fluidelastic instability, however, is significant.

  • PDF

Quantification of Acoustic Pressure Estimation Error due to Sensor Position Mismatch in Spherical Acoustic Holography (구형 음향 홀로그래피에서 측정위치 부정확성에 의한 음압 추정 오차의 정량화)

  • Lee, Seung-Ha;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1325-1328
    • /
    • 2007
  • When we visualize the sound field radiated from a spherical sound source, spherical acoustic holography is proper among acoustic holography methods. However, there are measurement errors due to sensor position mismatch, sensor mismatch, directivity of sensor, and background noise. These errors are amplified if one predicts the pressures close to the sources: backward prediction. The goal of this paper is to quantitatively examine the effects of the error due to sensor position mismatch on acoustic pressure estimation. This paper deals with the cases of which the measurement deviations are distributed irregularly on the hologram plane. In such cases, one can assume that the measurement is a sample of many measurement events, and the cause of the measurement error is white noise on the hologram plane. Then the bias and random error are derived mathematically. In the results, it is found that the random error is important in the backward prediction. The relationship between the random error amplification ratio and the measurement parameters is derived quantitatively in terms of their energies.

  • PDF

Random response analysis of Missile Guidance Structure by using Finite Element Method (유한요소 해석을 이용한 Missile Guidance Structure의 Random response analysis)

  • Kim, Jaeki;Nam, Kwangsik;choi, Jinkyu;Choi, Homin;Zhao, Shang;Yeom, Sang Hun;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.51-56
    • /
    • 2015
  • In the vibration test, Most of the test specifications is standardized methods of sinusoidal excitation. However, in accordance with the ability of the test equipment progress and developments of electronic technology, methods of random vibration test is standardized in the MIL standard. Therefore, in this study, we tried to analyze Missile Guidance Structure using a finite element analysis with ABAQUS 6.13 that is commercial program. First, Random response analysis is analyzed. Following analyzing the results, we wanted to find the model that is lightweight and resonance does not occur.

Simulation of Seismic Ground Accelerations and Seismic Analysis of Flexible Rotor-Bearing System Housed on the Rigid Base (지반가속도의 시뮬레이션과 강기반상(剛基盤上)에 설치된 회전측-베어링계의 지진해석)

  • Kim, Ki Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.51-61
    • /
    • 1989
  • The classical spectral analysis of random vibration is not applicable to the random vibration of nonlinear structures or the dynamic response of active mechanical systems whose governing equations contain random parametric and inhomogeneous excitations. If the random load is simulated, dynamic responses can be obtained with the application of numerical integration schemes to the governing equations of above problems. Thus, in this paper, efficient and practical methods of simulating nonstationary random seismic ground accelerations are presented by using the fast Fourier transform technique. Typical applications of the simulated ground accelerations are the simulations of the dynamic response of rotor-bearing systems under earthquake excitations. The study of accuracy is presented to determine the applicability and practicality of methods of simulation.

  • PDF

Propagation of non-uniformly modulated evolutionary random waves in a stratified viscoelastic solid

  • Gao, Q.;Howson, W.P.;Watson, A.;Lin, J.H.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.213-225
    • /
    • 2006
  • The propagation of non-uniformly modulated, evolutionary random waves in viscoelastic, transversely isotropic, stratified materials is investigated. The theory is developed in the context of a multi-layered soil medium overlying bedrock, where the material properties of the bedrock are considered to be much stiffer than those of the soil and the power spectral density of the random excitation is assumed to be known at the bedrock. The governing differential equations are first derived in the frequency/wave-number domain so that the displacement response of the ground may be computed. The eigen-solution expansion method is then used to solve for the responses of the layers. This utilizes the precise integration method, in combination with the extended Wittrick-Williams algorithm, to obtain all the eigen-solutions of the ordinary differential equation. The recently developed pseudo-excitation method for structural random vibration is then used to determine the solution of the layered soil responses.

Optimization of active vibration control for random intelligent truss structures under non-stationary random excitation

  • Gao, W.;Chen, J.J.;Hu, T.B.;Kessissoglou, N.J.;Randall, R.B.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.137-150
    • /
    • 2004
  • The optimization of active bars' placement and feedback gains of closed loop control system for random intelligent truss structures under non-stationary random excitation is presented. Firstly, the optimal mathematical model with the reliability constraints on the mean square value of structural dynamic displacement and stress response are built based on the maximization of dissipation energy due to control action. In which not only the randomness of the physics parameters of structural materials, geometric dimensions and structural damping are considered simultaneously, but also the applied force are considered as non-stationary random excitation. Then, the numerical characteristics of the stationary random responses of random intelligent structure are developed. Finally, the rationality and validity of the presented model are demonstrated by an engineering example and some useful conclusions are obtained.

Random Vibration and Harmonic Response Analyses of Upper Guide Structure Assembly to Flow Induced Loads (유체유발하중을 받는 상부안내구조물의 랜덤진동 및 조화응답해석)

  • 지용관;이영신
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.59-68
    • /
    • 2002
  • The cylindrical Upper Guide Structure assembly of the reactor intervals wish the Core Support Barrel and the Inner Barrel Assembly is subjected to flow induced loads horizontally which include random pressure fluctuation due to turbulent flow and pump pulsation pressures. The purpose of this papers is to perform random vibration and harmonic response analyses fort flow induced loads. The dynamic response characteristics due to random turbulence and pump pulsation loads were evaluated using the lumped mass beam model. Especially the model considered the annulus effects due to water gaps existing between cylindrical structures such as the Upper Guide Structure Barrel, the Core Support Barrel, and the Inner Barrel Assembly. The effect of the Inner Barrel Assembly inside the Upper Guide Structure assembly was studied. The peak dynamic responses lot each loading condition due to the addition of IBA were affected by the natural frequencies of the structures. Therefore the peak dynamic responses of the structures should be conservatively obtained from evaluation of dynamic analysis for various loading conditions.

Nonlinear Transient Responses of Isotropic Plates Under Thermo-Acoustic Load (열-음향 복합하중에 놓인 등방성 평판의 비선형 응답특성)

  • Oh, Il-Kwon;Cheng, Tai-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.235-238
    • /
    • 2006
  • For high-speed aircraft and high-speed civil transport planes, certain structural skin components are subjected to very large acoustic loads in an elevated thermal environment. In this study, we used the single-mode Fokker-Panck distribution to predict displacements of isotropic plates subject to thermo-acoustic combined load. The single mode was formulated to predict the nonlinear dynamic responses of postbuckled plates under acoustic random excitation. Acoustic random excitation was used with Gauss distribution. Some important effects of the snap-through motion on the dynamic responses of the postbuckled plates are described.

  • PDF