• Title/Summary/Keyword: Rainfall prediction

Search Result 567, Processing Time 0.03 seconds

Prediction model of propagation of the millimeter wave wireless transmission channels in the rain environment (밀리미터파 무선전송채널의 강우 전파특성 예측모델 개발)

  • 김영민
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.4
    • /
    • pp.55-61
    • /
    • 2000
  • The ITU-R model for cross-polarization due to rain is applicable only upto 3.5GHz. The scattering characteristics of rain drops are analyzed by an analytical model. A simple theoretical model for croee-polarization, which is accurate enough in real rainfall environments. is Proposed in this Paper. By comparing this with measurement data and the ITU-R, we have also derived an prediction model for rain cross-polarization applicable upto millimeter wave band.

  • PDF

Temporal and Spatial correlation of Meteorological Data in Sumjin River and Yongsan River Basins (섬진강 및 영산강 유역 기상자료의 시.공간적 상관성)

  • 김기성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.6
    • /
    • pp.44-53
    • /
    • 1999
  • The statistical characteristics of the factors related to the daily rainfall prediction model are analyzed . Records of daily precipitation, mean air temperature, relative humidity , dew-point temperature and air pressure from 1973∼1998 at 8 meteorological sttions in south-western part of Korea were used. 1. Serial correlatino of daily precipitaiton was significant with the lag less than 1 day. But , that of other variables were large enough until 10 day lag. 2. Crosscorrelation of air temperature, relative humidity , dew-point temperature showed similar distribution wiht the basin contrours and the others were different. 3. There were significant correlation between the meteorological variables and precipitation preceded more than 2 days. 4. Daily preciption of each station were treated as a truncated continuous random variable and the annual periodic components, mean and standard deviation were estimated for each day. 5. All of the results could be considered to select the input variables of regression model or neural network model for the prediction of daily precipitation and to construct the stochastic model of daily precipitation.

  • PDF

A Novel Thresholding for Prediction Analytics with Machine Learning Techniques

  • Shakir, Khan;Reemiah Muneer, Alotaibi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.33-40
    • /
    • 2023
  • Machine-learning techniques are discovering effective performance on data analytics. Classification and regression are supported for prediction on different kinds of data. There are various breeds of classification techniques are using based on nature of data. Threshold determination is essential to making better model for unlabelled data. In this paper, threshold value applied as range, based on min-max normalization technique for creating labels and multiclass classification performed on rainfall data. Binary classification is applied on autism data and classification techniques applied on child abuse data. Performance of each technique analysed with the evaluation metrics.

Development and Evaluation of the High Resolution Limited Area Ensemble Prediction System in the Korea Meteorological Administration (기상청 고해상도 국지 앙상블 예측 시스템 구축 및 성능 검증)

  • Kim, SeHyun;Kim, Hyun Mee;Kay, Jun Kyung;Lee, Seung-Woo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.67-83
    • /
    • 2015
  • Predicting the location and intensity of precipitation still remains a main issue in numerical weather prediction (NWP). Resolution is a very important component of precipitation forecasts in NWP. Compared with a lower resolution model, a higher resolution model can predict small scale (i.e., storm scale) precipitation and depict convection structures more precisely. In addition, an ensemble technique can be used to improve the precipitation forecast because it can estimate uncertainties associated with forecasts. Therefore, NWP using both a higher resolution model and ensemble technique is expected to represent inherent uncertainties of convective scale motion better and lead to improved forecasts. In this study, the limited area ensemble prediction system for the convective-scale (i.e., high resolution) operational Unified Model (UM) in Korea Meteorological Administration (KMA) was developed and evaluated for the ensemble forecasts during August 2012. The model domain covers the limited area over the Korean Peninsula. The high resolution limited area ensemble prediction system developed showed good skill in predicting precipitation, wind, and temperature at the surface as well as meteorological variables at 500 and 850 hPa. To investigate which combination of horizontal resolution and ensemble member is most skillful, the system was run with three different horizontal resolutions (1.5, 2, and 3 km) and ensemble members (8, 12, and 16), and the forecasts from the experiments were evaluated. To assess the quantitative precipitation forecast (QPF) skill of the system, the precipitation forecasts for two heavy rainfall cases during the study period were analyzed using the Fractions Skill Score (FSS) and Probability Matching (PM) method. The PM method was effective in representing the intensity of precipitation and the FSS was effective in verifying the precipitation forecast for the high resolution limited area ensemble prediction system in KMA.

A Prediction of Northeast Asian Summer Precipitation Using the NCEP Climate Forecast System and Canonical Correlation Analysis (NCEP 계절예측시스템과 정준상관분석을 이용한 북동아시아 여름철 강수의 예측)

  • Kwon, MinHo;Lee, Kang-Jin
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.88-94
    • /
    • 2014
  • The seasonal predictability of the intensity of the Northeast Asian summer monsoon is low while that of the western North subtropical high variability is, when state-of-the-art general circulation models are used, relatively high. The western North Pacific subtropical high dominates the climate anomalies in the western North Pacific-East Asian region. This study discusses the predictability of the western North Pacific subtropical High variability in the National Centers for Environmental Prediction Climate Forecast System (NCEP CFS). The interannual variability of the Northeast Asian summer monsoon is highly correlated with one of the western North Pacific subtropical Highs. Based on this relationship, we suggest a seasonal prediction model using NCEP CFS and canonical correlation analysis for Northeast Asian summer precipitation anomalies and assess the predictability of the prediction model. This methodology provides significant skill in the seasonal prediction of the Northeast Asian summer rainfall anomalies.

Prediction of Potential Landslide Sites Using Deterministic model (결정론적 모형을 이용한 산사태 위험지 예측)

  • Cha, Kyung-Seob;Chang, Pyoung-Wuck;Lee, Haeng-Woo;Nho, Soo-Kack
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.655-662
    • /
    • 2005
  • The objective of this thesis is to develop a prediction system of potential landslide sites to apply to the prevention of landslide disaster which occurred during the heavy rainfall in the rainy season. The system was developed by combining a modified slope stability analysis model and a hydrological model. The modified slope stability analysis model, which was improved from 1-D infinite slope stability analysis model, has been taken into consideration of the flexion of the hill slopes. To evaluate its applicability to the prediction of landslides, the data of actual landslides were plotted on the predicted areas on the GIS map. The matching rate of this model to the actual data was 92.4%. And the relations between wetness index and landform factors and potential landslide were analyzed.

  • PDF

Online Flow Prediction by Kalman Filter (Kalman Filter에 의한 Online 유출예측(流出豫測))

  • Lee, Won Hwan;Rhee, Young Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.57-65
    • /
    • 1986
  • The need of forecasting river flows arised whenever a river authority must make controls to protect the life and property from the flood and maintain the adequate flows for water use. This study is on the real time flood forecasting from the gauged and ungauged rainfall input and identification of second-order autoregressive(AR(2)) which is used as system model. A Kalman filter is used to obtain the values of the system parameters needed for the optimal control strategy. This system model was applied to the data at the Naiu gauging station in Young san river basin to check the accuracy and efficiency of prediction. One step ahead prediction is checked by stochastic analysis and the order of autoregressive model is proved to be satisfied, Discussions on interesting features of the model are presented.

  • PDF

Evaluation of Daily Precipitation Estimate from Integrated MultisatellitE Retrievals for GPM (IMERG) Data over South Korea and East Asia (동아시아 및 남한 지역에서의 Integrated MultisatellitE Retrievals for GPM (IMERG) 일강수량의 지상관측 검증)

  • Lee, Juwon;Lee, Eun-Hee
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.273-289
    • /
    • 2018
  • This paper evaluates daily precipitation products from Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG), Tropical Rainfall Measuring Mission Multisatellite (TRMM) Precipitation Analysis (TMPA), and the Climate Prediction Center Morphing Method (CMORPH), validated against gauge observation over South Korea and gauge-based analysis data East Asia during one year from June 2014 to May 2015. It is found that the three products effectively capture the seasonal variation of mean precipitation with relatively good correlation from spring to fall. Among them, IMERG and TMPA show quite similar precipitation characteristics but overall underestimation is found from all precipitation products during winter compared with observation. IMERG shows reliably high performance in precipitation for all seasons, showing the most unbiased and accurate precipitation estimation. However, it is also noticed that IMERG reveals overestimated precipitation for heavier precipitation thresholds. This assessment work suggests the validity of the IMERG product for not only seasonal precipitation but also daily precipitation, which has the potential to be used as reference precipitation data.

Comparison of Prediction Models for Identification of Areas at Risk of Landslides due to Earthquake and Rainfall (지진 및 강우로 인한 산사태 발생 위험지 예측 모델 비교)

  • Jeon, Seongkon;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.6
    • /
    • pp.15-22
    • /
    • 2019
  • In this study, the hazard areas are identified by using the Newmark displacement model, which is a predictive model for identifying the areas at risk of landslide triggered by earthquakes, based on the results of field survey and laboratory test, and literature data. The Newmark displacement model mainly utilizes earthquake and slope related data, and the safety of slope stability derived from LSMAP, which is a landslide prediction program. Backyang Mt. in Busan where the landslide has already occurred, was chosen as the study area of this research. As a result of this study, the area of landslide prone zone identified by using the Newmark displacement model without earthquake factor is about 1.15 times larger than that identified by using LSMAP.

Deep-Learning-Based Water Shield Automation System by Predicting River Overflow and Vehicle Flooding Possibility (하천 범람 및 차량 침수 가능성 예측을 통한 딥러닝 기반 차수막 자동화 시스템)

  • Seung-Jae Ham;Min-Su Kang;Seong-Woo Jeong;Joonhyuk Yoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.133-139
    • /
    • 2023
  • This paper proposes a two-stage Water Shield Automation System (WSAS) to predict the possibility of river overflow and vehicle flooding due to sudden rainfall. The WSAS uses a two-stage Deep Neural Network (DNN) model. First, a river overflow prediction module is designed with LSTM to decide whether the river is flooded by predicting the river's water level rise. Second, a vehicle flooding prediction module predicts flooding of underground parking lots by detecting flooded tires with YOLOv5 from CCTV images. Finally, the WSAS automatically installs the water barrier whenever the river overflow and vehicle flooding events happen in the underground parking lots. The only constraint to implementing is that collecting training data for flooded vehicle tires is challenging. This paper exploits the Image C&S data augmentation technique to synthesize flooded tire images. Experimental results validate the superiority of WSAS by showing that the river overflow prediction module can reduce RMSE by three times compared with the previous method, and the vehicle flooding detection module can increase mAP by 20% compared with the naive detection method, respectively.