DOI QR코드

DOI QR Code

Development and Evaluation of the High Resolution Limited Area Ensemble Prediction System in the Korea Meteorological Administration

기상청 고해상도 국지 앙상블 예측 시스템 구축 및 성능 검증

  • Kim, SeHyun (Atmospheric Predictability and Data Assimilation Laboratory, Department of Atmospheric Sciences, Yonsei University) ;
  • Kim, Hyun Mee (Atmospheric Predictability and Data Assimilation Laboratory, Department of Atmospheric Sciences, Yonsei University) ;
  • Kay, Jun Kyung (Atmospheric Predictability and Data Assimilation Laboratory, Department of Atmospheric Sciences, Yonsei University) ;
  • Lee, Seung-Woo (Korea Meteorological Administration)
  • 김세현 (연세대학교 대기과학과, 대기예측성 및 자료동화 연구실) ;
  • 김현미 (연세대학교 대기과학과, 대기예측성 및 자료동화 연구실) ;
  • 계준경 (연세대학교 대기과학과, 대기예측성 및 자료동화 연구실) ;
  • 이승우 (기상청 수치모델개발과)
  • Received : 2014.11.14
  • Accepted : 2015.01.22
  • Published : 2015.03.31

Abstract

Predicting the location and intensity of precipitation still remains a main issue in numerical weather prediction (NWP). Resolution is a very important component of precipitation forecasts in NWP. Compared with a lower resolution model, a higher resolution model can predict small scale (i.e., storm scale) precipitation and depict convection structures more precisely. In addition, an ensemble technique can be used to improve the precipitation forecast because it can estimate uncertainties associated with forecasts. Therefore, NWP using both a higher resolution model and ensemble technique is expected to represent inherent uncertainties of convective scale motion better and lead to improved forecasts. In this study, the limited area ensemble prediction system for the convective-scale (i.e., high resolution) operational Unified Model (UM) in Korea Meteorological Administration (KMA) was developed and evaluated for the ensemble forecasts during August 2012. The model domain covers the limited area over the Korean Peninsula. The high resolution limited area ensemble prediction system developed showed good skill in predicting precipitation, wind, and temperature at the surface as well as meteorological variables at 500 and 850 hPa. To investigate which combination of horizontal resolution and ensemble member is most skillful, the system was run with three different horizontal resolutions (1.5, 2, and 3 km) and ensemble members (8, 12, and 16), and the forecasts from the experiments were evaluated. To assess the quantitative precipitation forecast (QPF) skill of the system, the precipitation forecasts for two heavy rainfall cases during the study period were analyzed using the Fractions Skill Score (FSS) and Probability Matching (PM) method. The PM method was effective in representing the intensity of precipitation and the FSS was effective in verifying the precipitation forecast for the high resolution limited area ensemble prediction system in KMA.

Keywords

References

  1. Barker, T. W., 1991: The relationship between spread and forecast error in extended-range forecasts. J. Climate, 4, 733-742. https://doi.org/10.1175/1520-0442(1991)004<0733:TRBSAF>2.0.CO;2
  2. Baker, L., A. Rudd, S. Migliorini, and R. Bannister, 2014: Representation of model error in a convective-scale ensemble prediction system. Nonlin. Proc. Geophys., 21, 19-39, doi:10.5194/npg-21-19-2014.
  3. Bowler, N. E., A. Arribas, K. R. Mylne, K. B. Robertson, and S. E. Beare, 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703-722. https://doi.org/10.1002/qj.234
  4. Clark, A. J., and Coauthors, 2011: Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble. Mon. Wea. Rev., 139, 1410-1418. https://doi.org/10.1175/2010MWR3624.1
  5. Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office's global and regional modeling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 1759-1782. https://doi.org/10.1256/qj.04.101
  6. Davis, C., B. Brown, and R. Bullock, 2006: Object-based verification of precipitation forecasts. Part I: methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 1772-1784. https://doi.org/10.1175/MWR3145.1
  7. Done, J., C. A. Davis, and M. L. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmos. Sci. Lett., 5, 110-117, doi:10.1002/asl.72.
  8. Done, J. M., G. C. Craig, S. L. Gray, and P. A. Clark, 2012: Case-to-case variability of predictability of deep convection in a mesoscale model. Quart. J. Roy. Meteor. Soc., 138, 638-648, doi:10.1002/qj.943
  9. Du, J., S. L. Mullen, and F. Sanders, 1997: Short-range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125, 2427-2459. https://doi.org/10.1175/1520-0493(1997)125<2427:SREFOQ>2.0.CO;2
  10. Duc, L., K. Saito, and H. Seko, 2013: Spatial-temporal fractions verification for high-resolution ensemble forecasts. Tellus, 65A, 18171, doi:10.3402/tellusa.v65i0.18171.
  11. Ebert, E. E., 2001: Ability of a Poor Man's ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 2461-2480. https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2
  12. Ebert, E. E., 2008: Fuzzy verification of high resolution gridded forecasts: a review and proposed framework. Meteor. Appl., 15, 51-64. https://doi.org/10.1002/met.25
  13. Ebert, E. E., and J. L. McBride, 2000: Verification of precipitation in weather systems: determination of systematic errors. J. Hydrol., 239, 179-202. https://doi.org/10.1016/S0022-1694(00)00343-7
  14. Edward, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689-719. https://doi.org/10.1002/qj.49712253107
  15. Essery, R., M. Best, and P. Cox, 2001: 'MOSES 2.2 Technical Documentation'. Technical Report 30, Hadley Centre. [Available online at http://www.metoffice.gov.uk/research/hadleycentre/pubs/HCTN/index.html.].
  16. Gebhardt, C., S. E. Theis, M. Paulat, and Z. Ben Bouallegue, 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variations of lateral boundaries. Atmos. Res., 100, 168-177. https://doi.org/10.1016/j.atmosres.2010.12.008
  17. Hanley, K. E., D. J. Kirshbaum, S. E. Belcher, N. M. Roberts, and G. Leoncini, 2011: Ensemble predictability of an isolated mountain thunderstorm in a high-resolution model. Quart. J. Roy. Meteor. Soc., 137, 2124-2137, doi:10.1002/qj.877.
  18. Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931-952. https://doi.org/10.1175/WAF2007106.1
  19. Kay, J. K., and H. M. Kim, 2014: Characteristics of initial perturbations in the ensemble prediction system of the Korea Meteorological Administration. Wea. Forecasting, 29, 563-581, doi:10.1175/WAF-D-13-00097.1.
  20. Kay, J. K., and H. M. Kim, Y.-Y. Park, and J. Son, 2013: Effect of doubling ensemble size on the performance of ensemble prediction in warm season using MOGREPS implemented in KMA. Adv. Atmos. Sci., 30, 1287-1302, doi:10.1007/s00376-012-2083-y.
  21. Kim, S., and H. M. Kim, 2014: Neighborhood-based verification of high resolution ensemble forecast system in KMA. 94th American Meteorological Society Annual Meeting, 2-6 Feb, 2014, Atlanta, Georgia. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper234899.html.].
  22. Kong, F., K. K. Droegmeier, and N. L. Hickmon, 2007: Multi-resolution ensemble forecasts of an observed tornadic thunderstorm system. Part II: Storm-scale experiments. Mon. Wea. Rev., 135, 759-782. https://doi.org/10.1175/MWR3323.1
  23. Korea Meteorological Administration, 2012: Annual Climate Report, 312 pp. [Available online at http://www.kma.go.kr/repositary/sfc/pdf/sfc_ann_2012.pdf.].
  24. Kuhnlein, C., C. Keil, G. C. Craig, and C. Gebhardt, 2014: The impact of downscaled initial condition perturbations on convective-scale ensemble forecasts of precipitation. Quart. J. Roy. Meteor. Soc., 140, 1552-1562, doi:10.1002/qj.2238.
  25. Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-col umn model tests. Mon. Wea. Rev., 128, 3187-3199. https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2
  26. Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289-307. https://doi.org/10.1111/j.2153-3490.1969.tb00444.x
  27. Marsigli, C., A. Montani, and T. Paccagnella, 2013: Test of a COSMO-based convection-permitting ensemble in the Hymex framework. COSMO Newsletter No. 13, 5 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/default.htm.].
  28. Marsigli, C., A. Montani, and T. Paccagnella, 2014: Provision of boundary conditions for a convection-permitting ensemble: comparison of two different approaches. Nonlinear Proc. Geoph., 21, 393-403, doi:10.5194/npg-21-393-2014.
  29. Marsigli, C., F. Boccanera, A. Montani, and T. Paccagnella, 2005: The COSMO-LEPS mesoscale ensemble system: validation of the methodology and verification. Nonlinear Proc. Geoph., 12, 527-536. https://doi.org/10.5194/npg-12-527-2005
  30. Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts?. Bull. Amer. Meteor. Soc., 83, 407-430. https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2
  31. Met. Office, 1998: Unified Model User Guide, 200 pp. [Available online at http://www.ukscience.org/_Media/UM_User_Guide.pdf.].
  32. Migliorini, S., M. Dixon, R. Bannister, and S. Ballard, 2011: Ensemble prediction for nowcasting with a convection permitting model-I: Description of the system and the impact of radar-derived surface precipitation rates. Tellus, 63A, 468-496, doi:10.1111/j.1600-0870.2010.00503.x.
  33. Mittermaier, M., N. Roberts, and S. A. Thompson, 2012: A long-term assessment of precipitation forecast skill using the fractions skill score. Meteor. Appl., 20, 176-186, doi:10.1002/met.296.
  34. Mylne, K., 2013: Scientific framework for the ensemble prediction system for the UKV. MOSAC Paper 18.6, Met Office, 12 pp. [Available online at http://www.metoffice.gov.uk/media/pdf/q/0/MOSAC_18.6_Mylne.pdf.]
  35. Roberts, N. M., 2008: Assessing the spatial and temporal variation in skill of precipitation forecasts from an NWP model. Meteor. Appl., 15, 163-169. https://doi.org/10.1002/met.57
  36. Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78-97. https://doi.org/10.1175/2007MWR2123.1
  37. Roberts, N. M., G. Leoncini, and C. Wang, 2011: Storm-permitting Ensemble. Presentation at 9th International SRNWP-Workshop on Non-Hydrostatic Modelling, 16-18 May, 2011, Bad orb, Germany. [Available online at http://srnwp.met.hu/workshops/BadOrb_2011/Presentations/05_Predictability/01_Roberts/ROBERTSN_SRNWP_MAY18_2011.pdf.].
  38. Saito, K., H. Seko, T. Kawabata, Y. Shoji, T. Kuroda, T. Fujita, and O. Suzuki, 2011: Studies at MRI toward cloud resolving ensemble NWP. Presentation at 11th EMS Annual Meeting, 12-16 Sep, 2011, Berlin, Germany. [Available online at http://presentations.copernicus.org/EMS2011-527_presentation.pdf.].
  39. Schwarts, C. S., and Coauthors, 2009: Next-day convection- allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 3351-3372. https://doi.org/10.1175/2009MWR2924.1
  40. Shin, H. H., and S.-Y. Hong, 2013: Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions. J. Atmos. Sci., 70, 3248-3261. https://doi.org/10.1175/JAS-D-12-0290.1
  41. Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0-36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407-437. https://doi.org/10.1175/2007WAF2007005.1
  42. Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 1607-1636. https://doi.org/10.1002/qj.49712555707
  43. Zacharov, P., and D. Rezacova, 2009: Using the fractions skill score to assess the relationship between an ensemble QPF spread and skill. Atmos. Res., 94, 684-693, doi:10.1016/j.atmosres.2009.03.004.

Cited by

  1. Effect of Considering Sub-Grid Scale Uncertainties on the Forecasts of a High-Resolution Limited Area Ensemble Prediction System vol.174, pp.5, 2017, https://doi.org/10.1007/s00024-017-1513-2
  2. Effects of Resolution, Cumulus Parameterization Scheme, and Probability Forecasting on Precipitation Forecasts in a High-Resolution Limited-Area Ensemble Prediction System vol.54, pp.4, 2018, https://doi.org/10.1007/s13143-018-0081-4
  3. The Development of a Rainfall Correction Technique based on Machine Learning for Hydrological Applications vol.28, pp.1, 2019, https://doi.org/10.5322/JESI.2019.28.1.125
  4. Bias Correction of Short-Range Ensemble Forecasts of Daily Maximum Temperature Using Decaying Average pp.1976-7951, 2019, https://doi.org/10.1007/s13143-019-00143-8