Browse > Article
http://dx.doi.org/10.14191/Atmos.2015.25.1.067

Development and Evaluation of the High Resolution Limited Area Ensemble Prediction System in the Korea Meteorological Administration  

Kim, SeHyun (Atmospheric Predictability and Data Assimilation Laboratory, Department of Atmospheric Sciences, Yonsei University)
Kim, Hyun Mee (Atmospheric Predictability and Data Assimilation Laboratory, Department of Atmospheric Sciences, Yonsei University)
Kay, Jun Kyung (Atmospheric Predictability and Data Assimilation Laboratory, Department of Atmospheric Sciences, Yonsei University)
Lee, Seung-Woo (Korea Meteorological Administration)
Publication Information
Atmosphere / v.25, no.1, 2015 , pp. 67-83 More about this Journal
Abstract
Predicting the location and intensity of precipitation still remains a main issue in numerical weather prediction (NWP). Resolution is a very important component of precipitation forecasts in NWP. Compared with a lower resolution model, a higher resolution model can predict small scale (i.e., storm scale) precipitation and depict convection structures more precisely. In addition, an ensemble technique can be used to improve the precipitation forecast because it can estimate uncertainties associated with forecasts. Therefore, NWP using both a higher resolution model and ensemble technique is expected to represent inherent uncertainties of convective scale motion better and lead to improved forecasts. In this study, the limited area ensemble prediction system for the convective-scale (i.e., high resolution) operational Unified Model (UM) in Korea Meteorological Administration (KMA) was developed and evaluated for the ensemble forecasts during August 2012. The model domain covers the limited area over the Korean Peninsula. The high resolution limited area ensemble prediction system developed showed good skill in predicting precipitation, wind, and temperature at the surface as well as meteorological variables at 500 and 850 hPa. To investigate which combination of horizontal resolution and ensemble member is most skillful, the system was run with three different horizontal resolutions (1.5, 2, and 3 km) and ensemble members (8, 12, and 16), and the forecasts from the experiments were evaluated. To assess the quantitative precipitation forecast (QPF) skill of the system, the precipitation forecasts for two heavy rainfall cases during the study period were analyzed using the Fractions Skill Score (FSS) and Probability Matching (PM) method. The PM method was effective in representing the intensity of precipitation and the FSS was effective in verifying the precipitation forecast for the high resolution limited area ensemble prediction system in KMA.
Keywords
The high resolution limited area ensemble prediction system of the Korea Meteorological Administration; ensemble forecast; precipitation forecast; Fractions Skill Score; Probability Matching;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Duc, L., K. Saito, and H. Seko, 2013: Spatial-temporal fractions verification for high-resolution ensemble forecasts. Tellus, 65A, 18171, doi:10.3402/tellusa.v65i0.18171.   DOI
2 Ebert, E. E., 2001: Ability of a Poor Man's ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 2461-2480.   DOI
3 Ebert, E. E., 2008: Fuzzy verification of high resolution gridded forecasts: a review and proposed framework. Meteor. Appl., 15, 51-64.   DOI
4 Ebert, E. E., and J. L. McBride, 2000: Verification of precipitation in weather systems: determination of systematic errors. J. Hydrol., 239, 179-202.   DOI
5 Edward, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689-719.   DOI
6 Essery, R., M. Best, and P. Cox, 2001: 'MOSES 2.2 Technical Documentation'. Technical Report 30, Hadley Centre. [Available online at http://www.metoffice.gov.uk/research/hadleycentre/pubs/HCTN/index.html.].
7 Gebhardt, C., S. E. Theis, M. Paulat, and Z. Ben Bouallegue, 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variations of lateral boundaries. Atmos. Res., 100, 168-177.   DOI
8 Hanley, K. E., D. J. Kirshbaum, S. E. Belcher, N. M. Roberts, and G. Leoncini, 2011: Ensemble predictability of an isolated mountain thunderstorm in a high-resolution model. Quart. J. Roy. Meteor. Soc., 137, 2124-2137, doi:10.1002/qj.877.   DOI
9 Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931-952.   DOI
10 Kay, J. K., and H. M. Kim, 2014: Characteristics of initial perturbations in the ensemble prediction system of the Korea Meteorological Administration. Wea. Forecasting, 29, 563-581, doi:10.1175/WAF-D-13-00097.1.   DOI
11 Kay, J. K., and H. M. Kim, Y.-Y. Park, and J. Son, 2013: Effect of doubling ensemble size on the performance of ensemble prediction in warm season using MOGREPS implemented in KMA. Adv. Atmos. Sci., 30, 1287-1302, doi:10.1007/s00376-012-2083-y.   DOI
12 Kim, S., and H. M. Kim, 2014: Neighborhood-based verification of high resolution ensemble forecast system in KMA. 94th American Meteorological Society Annual Meeting, 2-6 Feb, 2014, Atlanta, Georgia. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper234899.html.].
13 Kong, F., K. K. Droegmeier, and N. L. Hickmon, 2007: Multi-resolution ensemble forecasts of an observed tornadic thunderstorm system. Part II: Storm-scale experiments. Mon. Wea. Rev., 135, 759-782.   DOI
14 Korea Meteorological Administration, 2012: Annual Climate Report, 312 pp. [Available online at http://www.kma.go.kr/repositary/sfc/pdf/sfc_ann_2012.pdf.].
15 Kuhnlein, C., C. Keil, G. C. Craig, and C. Gebhardt, 2014: The impact of downscaled initial condition perturbations on convective-scale ensemble forecasts of precipitation. Quart. J. Roy. Meteor. Soc., 140, 1552-1562, doi:10.1002/qj.2238.   DOI
16 Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-col umn model tests. Mon. Wea. Rev., 128, 3187-3199.   DOI
17 Marsigli, C., F. Boccanera, A. Montani, and T. Paccagnella, 2005: The COSMO-LEPS mesoscale ensemble system: validation of the methodology and verification. Nonlinear Proc. Geoph., 12, 527-536.   DOI
18 Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289-307.   DOI
19 Marsigli, C., A. Montani, and T. Paccagnella, 2013: Test of a COSMO-based convection-permitting ensemble in the Hymex framework. COSMO Newsletter No. 13, 5 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/default.htm.].
20 Marsigli, C., A. Montani, and T. Paccagnella, 2014: Provision of boundary conditions for a convection-permitting ensemble: comparison of two different approaches. Nonlinear Proc. Geoph., 21, 393-403, doi:10.5194/npg-21-393-2014.   DOI
21 Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts?. Bull. Amer. Meteor. Soc., 83, 407-430.   DOI
22 Met. Office, 1998: Unified Model User Guide, 200 pp. [Available online at http://www.ukscience.org/_Media/UM_User_Guide.pdf.].
23 Migliorini, S., M. Dixon, R. Bannister, and S. Ballard, 2011: Ensemble prediction for nowcasting with a convection permitting model-I: Description of the system and the impact of radar-derived surface precipitation rates. Tellus, 63A, 468-496, doi:10.1111/j.1600-0870.2010.00503.x.
24 Mittermaier, M., N. Roberts, and S. A. Thompson, 2012: A long-term assessment of precipitation forecast skill using the fractions skill score. Meteor. Appl., 20, 176-186, doi:10.1002/met.296.   DOI
25 Roberts, N. M., G. Leoncini, and C. Wang, 2011: Storm-permitting Ensemble. Presentation at 9th International SRNWP-Workshop on Non-Hydrostatic Modelling, 16-18 May, 2011, Bad orb, Germany. [Available online at http://srnwp.met.hu/workshops/BadOrb_2011/Presentations/05_Predictability/01_Roberts/ROBERTSN_SRNWP_MAY18_2011.pdf.].
26 Mylne, K., 2013: Scientific framework for the ensemble prediction system for the UKV. MOSAC Paper 18.6, Met Office, 12 pp. [Available online at http://www.metoffice.gov.uk/media/pdf/q/0/MOSAC_18.6_Mylne.pdf.]
27 Roberts, N. M., 2008: Assessing the spatial and temporal variation in skill of precipitation forecasts from an NWP model. Meteor. Appl., 15, 163-169.   DOI
28 Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78-97.   DOI
29 Saito, K., H. Seko, T. Kawabata, Y. Shoji, T. Kuroda, T. Fujita, and O. Suzuki, 2011: Studies at MRI toward cloud resolving ensemble NWP. Presentation at 11th EMS Annual Meeting, 12-16 Sep, 2011, Berlin, Germany. [Available online at http://presentations.copernicus.org/EMS2011-527_presentation.pdf.].
30 Schwarts, C. S., and Coauthors, 2009: Next-day convection- allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 3351-3372.   DOI
31 Shin, H. H., and S.-Y. Hong, 2013: Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions. J. Atmos. Sci., 70, 3248-3261.   DOI
32 Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0-36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407-437.   DOI
33 Davis, C., B. Brown, and R. Bullock, 2006: Object-based verification of precipitation forecasts. Part I: methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 1772-1784.   DOI
34 Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 1607-1636.   DOI
35 Zacharov, P., and D. Rezacova, 2009: Using the fractions skill score to assess the relationship between an ensemble QPF spread and skill. Atmos. Res., 94, 684-693, doi:10.1016/j.atmosres.2009.03.004.   DOI
36 Barker, T. W., 1991: The relationship between spread and forecast error in extended-range forecasts. J. Climate, 4, 733-742.   DOI
37 Baker, L., A. Rudd, S. Migliorini, and R. Bannister, 2014: Representation of model error in a convective-scale ensemble prediction system. Nonlin. Proc. Geophys., 21, 19-39, doi:10.5194/npg-21-19-2014.   DOI
38 Bowler, N. E., A. Arribas, K. R. Mylne, K. B. Robertson, and S. E. Beare, 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703-722.   DOI
39 Clark, A. J., and Coauthors, 2011: Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble. Mon. Wea. Rev., 139, 1410-1418.   DOI
40 Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office's global and regional modeling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 1759-1782.   DOI
41 Done, J., C. A. Davis, and M. L. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmos. Sci. Lett., 5, 110-117, doi:10.1002/asl.72.   DOI
42 Done, J. M., G. C. Craig, S. L. Gray, and P. A. Clark, 2012: Case-to-case variability of predictability of deep convection in a mesoscale model. Quart. J. Roy. Meteor. Soc., 138, 638-648, doi:10.1002/qj.943   DOI
43 Du, J., S. L. Mullen, and F. Sanders, 1997: Short-range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125, 2427-2459.   DOI