• Title/Summary/Keyword: Railroad-contaminated soil

Search Result 22, Processing Time 0.023 seconds

Application of Bioremediation to Soil Contaminated by Lubricants Around Railroad Turnouts

  • Lee, Jae-Young;Kwon, Tae-Soon;Cho, Young-Min;Kang, Hae-Suk;Jung, Woo-Sung
    • International Journal of Railway
    • /
    • v.4 no.1
    • /
    • pp.1-4
    • /
    • 2011
  • In this study, the feasibility of using bioremediation to treat lubricant-contaminated soil around railroad turnouts was investigated. Lubricants used during the maintenance of railroad turnouts can drip onto the ground causing soil contamination. In the laboratory experiments, the residual TPH (Total Petroleum Hydrocarbons) concentration in soil gradually decreased after microorganisms degrading the lubricants were added. Generally, the soil around railroad turnouts is covered by a layer of ballasts. In the column experiments that were designed considering field sites, the removal efficiency of TPH was about 11% after 60 days of cultivation time. In the field experiments, microorganisms were added into the soil periodically, and finally the residual TPH concentrations were reduced to less than 1,700 mg/kg-soil on average. These results indicate that the lubricant in the contaminated soil around railroad turnouts could be efficiently removed through bioremediation method.

Remediation of Contaminated Railroad Soils using by Hybrid Pilot System (Hybrid Pilot System을 이용한 철도 오염토양 복원)

  • 박덕신
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.3
    • /
    • pp.101-108
    • /
    • 2000
  • In this study, we tested hybrid pilot system combined with soil vapor extraction and bioventing methods on the contaminated railroad soil. So, we found out the remediability and operating conditions. Air permeability(k) and gas phase(O$_2$/CO$_2$/VOCs) level trend are very important to determine the remediation rate of the contaminated sites. Throughout hybrid pilot test on different conditions, the range of air permeability(k) was 1985∼1194 darcy. The tests results in hybrid system was appropriate on this test sites, and the suitable injection air flow rate was 3.5㎥/hr. So, we suggested a basic data for the remediation and management of contaminated railroad soil.

  • PDF

Feasibility Study on Remediation for Railroad-contaminated Soil with Waste-lubricant (윤활유 유래 철도 오염토양의 정화방법 연구)

  • Park, Sung-Woo;Shin, Min-Chul;Jeon, Chil-Sung;Baek, Ki-Tae;Lee, Jae-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.30-35
    • /
    • 2008
  • In this study, the feasibility of soil washing, chemical oxidation and sonication was investigated to treat lubricantcontaminated railroad soil. Tergitol, a non-ionic surfactant, was used as a washing agent with or without iso-propyl acohol as a cosolvent. However, it was not effective to remove lubricant from soil even though tergitol was the most effective washing agent for diesel-contaminated soil. The cosolvent reduced the overall washing efficiency. Chemical oxidation removed 30% of lubricant from contaminated soil. Soil washing after chemical oxidation extracted additionally 16-17% of lubricant. Sonication enhanced-soil washing showed enhanced overall efficiency of soil washing. Lubricant-contaminated soil should be remediated by the other technology used for diesel-contaminated soil.

Analysis and Bioremediation for the Soil Contaminated by Lubricant (윤활유 오염토양의 분석 및 생물학적 복원)

  • Lee, Jae-Young;Jung, Woo-Sung;Cho, Young-Min;Choi, Sung-Kyou;Ko, Sung-Hwan;Kim, Hee-Man
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1843-1845
    • /
    • 2007
  • As the preservation law of soil environment has reinforced, several soil remediation projects have been performing for railroad sites. One of the main sources of soil contamination is the leakage of diesel from locomotives or underground storage tank. Also, the lubricant used to maintain turnouts causes railroad soil contamination. The purpose of this study was to develop the analysis and the remediation method for lubricant-contaminated soil. The lubricant in the contaminated soil was analyzed qualitatively and quantitatively by TLC (Thin Layer Chromatography) and GC (Gas Chromatography), respectively. The organic pollutants were removed from the soil using microorganisms degrading lubricant. Hereafter it will be necessary to apply this bioremediation method in the railroad field.

  • PDF

A Basic Study on the Remediation of Railroad Oil-contamination Soil (철도 유류 오염토양의 복원방안에 관한 기초연구)

  • Jung Woo-Sung;Park Duck-Shin;Yang Ji-Won
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.484-490
    • /
    • 2003
  • Fundamental data was obtained to apply to the real contaminated soil of railroad by analyzing pollutant-elimination efficiency and process variables through electro-kinetic technology as well as by investigating Pollution sources of railroad soil contaminated by oil and pollution propensities.

  • PDF

A Study on Oil Diffusion in the Soil under Railroad Track using 2-D Reactor (2-D 반응기를 이용한 선로 하부 토양 내 유류 확산에 관한 연구)

  • Kang, Hae-Suk;Kwon, Tae-Soon;Jung, Woo-Sung;Lee, Jae-Young;Cho, Young-Min;Jeon, Yong-Sam
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.982-984
    • /
    • 2008
  • Generally, the soil around railroad is contaminated by the leakage of oil during its maintenance or the operation of rolling stock. Because the railroad soil is located under ballast and is hardened with the designated strength due to safety, the characteristics of the polluted site are different. In this study, the phenomena of oil diffusion in the railroad site was investigated using 2-D reactor. The used oil was lubricant. As a result, the maximum diffusion depth of lubricant was about 9.5 cm due to its high viscosity and the hardened soil. The lubricant was diffused by gravity more than by horizontal migration. In the future, these results can be applied to develop a remediation method for the contaminated railroad soil.

  • PDF

Effect on electrolyte concentration during the ElectroKinetic-Fenton Process for contaminated soil around railroad turnout (선로분기기 주변 철도토양의 동전기-펜톤 공정 정화에 따른 전해질 농도의 영향)

  • Kang, Hae-Suk;Jung, Woo-Sung;Yun, Sung-Taek;Kwon, Tae-Soon;Lee, Cheul-Kyu;Kim, Hee-Man
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1997-2001
    • /
    • 2010
  • Generally, railroad soil around turnout was caused by leakage of lubricant oils during its maintenance. So, TPH concentration in soil was much higher than standard in Soil Envirnment Law. In additiont, railroad site was still difficult to assess due to railcar operation. This research was conducted to investigate the effect on electrolyte concentration during the Electrokinetic-Fenton process for contaminated soil around railroad turnout. As a result, experimental result shows that TPH removal in soil and amount of EOF were changed depending on electrolyte concentration. In future, the removal efficiency can be enhanced to optimize concentration in EK-Fenton Process.

  • PDF

Feasibility Study on Soil Flushing for Railway Soil Contaminated with Lubricant Oil and Zinc (토양세정 기술을 활용한 윤활유와 아연 복합오염 철도토양의 정화 연구)

  • Park, Sung-Woo;Cho, Jung-Min;Lee, Jae-Young;Park, Joon-Kyu;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.4
    • /
    • pp.31-37
    • /
    • 2011
  • The feasibility study of soil flushing was investigated to remediate lubricant oil and zinc contaminated railway soil. In this study, mixed washing agents of surfactant and inorganic acid/base were used for the simultaneous removal. The mixed washing agent of non-ionic surfactant and HCl removed 15% of the lubricant oil and 40% of zinc, respectively. Alkaline-enhanced soil washing process increased the removal of lubricant oil up to 40%. This is because alkaline solution reduced the interfacial tension between water phase and lubricant oil phase due to the soap formation reaction. To simulate in-situ soil flushing for the remediation of railroad-related contamination, two dimensional soil flushing was carried out based on the results of batch soil washing. In the soil flushing, the removal efficiencies of lubricant oil and zinc were 34% and 16%, respectively. Even though the removal efficiency was low, the mixed washing agent can remove metal and lubricant oil simultaneously.

A Study on Isolation of Mixed Heavy Metal-Contaminated Soil and the Waste in Railroad Workshop (철도 정비창의 폐기물과 혼합된 중금속 오염토 분리에 관한 연구)

  • Son, Woohwa;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.59-66
    • /
    • 2012
  • In this study, it was sampling from heavy metal-contaminated soil with the waste in railroad workshop. And, the pollution concentration and analysis of particle-size distribution were conducted to design efficient purification process that it was aimed at high contaminated area, low contaminated area and samples containing waste foundry sand. But, it was the other signs of general soil contamination, as construction waste of waste concrete and waste wood, waste foundry sand, incinerator ash, etc is overall buried on the grounds. Thus, the common heavy metal purification technology has not decreased the pollution. However, heavy-metal contamination was reduced by magnetic separation utilizing the magnetic component of the mixed waste.

Feasibility Study on the Remediation of Zn-contaminated Railroad Soil using Various Washing Agents (세척제를 이용한 아연오염 철도토양의 정화 타당성 연구)

  • Park, Sung-Woo;Lee, Jae-Young;Kwon, Tae-Soon;Kim, Kyung-Jo;Chung, Keun-Yook;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.78-82
    • /
    • 2009
  • In this study, the feasibility of soil washing and soil flushing was investigated to treat Zn-contaminated railroad soil. Various organic acids including ethylene diamine tetraacetic acid (EDTA) and citric acid as well as inorganic acids such as hydrochloric acid (HCl) and phosphoric acid were tested to evaluate washing efficiency. Generally, inorganic acid showed higher removal efficiency compared to organic acids. Particularly, EDTA, well known as the most effective washing agent for removal of heavy metals from soil, was not efficient to remove zinc in this study. Among washing agents tested in this study, HCl was the most effective. However, it is not effective to use HCl solution over 0.1 M concentration. Sequential process using HCl was effective to enhance the removal efficiency of zinc. In column test, the removal efficiency of Zn was 27%. Accordingly, it is feasible to treat Zn-contaminated railroad soil using soil washing or flushing with HCI.