Feasibility Study on the Remediation of Zn-contaminated Railroad Soil using Various Washing Agents

세척제를 이용한 아연오염 철도토양의 정화 타당성 연구

  • Park, Sung-Woo (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Lee, Jae-Young (Korea Railroad Research Institute) ;
  • Kwon, Tae-Soon (Korea Railroad Research Institute) ;
  • Kim, Kyung-Jo (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Chung, Keun-Yook (Chungbuk National University) ;
  • Baek, Ki-Tae (Department of Environmental Engineering, Kumoh National Institute of Technology)
  • Published : 2009.02.28

Abstract

In this study, the feasibility of soil washing and soil flushing was investigated to treat Zn-contaminated railroad soil. Various organic acids including ethylene diamine tetraacetic acid (EDTA) and citric acid as well as inorganic acids such as hydrochloric acid (HCl) and phosphoric acid were tested to evaluate washing efficiency. Generally, inorganic acid showed higher removal efficiency compared to organic acids. Particularly, EDTA, well known as the most effective washing agent for removal of heavy metals from soil, was not efficient to remove zinc in this study. Among washing agents tested in this study, HCl was the most effective. However, it is not effective to use HCl solution over 0.1 M concentration. Sequential process using HCl was effective to enhance the removal efficiency of zinc. In column test, the removal efficiency of Zn was 27%. Accordingly, it is feasible to treat Zn-contaminated railroad soil using soil washing or flushing with HCI.

본 연구에서는 철도 아연유래 토염토양을 정화하기 위해 토양세척과 토양세정의 타당성은 연구하였다. 무기산인 HCI및 $H_3PO_4$와 유기산인 citric acid및 ethylene diamine tetraacetic acid(EDTA)을 이용하여 토양세척을 수행하였다. 일반적으로 중금속 오염토양에 대하여 세척효율이 우수하다고 알려진 DETA는 본 오염 토양의 세척에는 효과적이지 않았다. 무기산 중에는 HCI이 34%의 아연 제거율로 가장 우수한 효과를 보였으며, 0.1 M HCI이상을 사용하는 것은 효과적이지 않았다. 또한 연속세척을 통하여 아연의 제거율을 향상시킬수 있었다. 칼럽실험에서 아연의 평균제거율은 27% 이였으며, 토양 내 아연 잔류농도는 기준치 이하인 662mg/kg까지 감소하였다.이와 같은 실험 결과를 바탕으로 HCI을 이용한 토양 세척 및 토양 세정을 이용하여 철도유래 아연 모염토양 정화가 충분히 가능한 것으로 판단된다.

Keywords

References

  1. 고일원, 이철효, 이광표, 김경웅, 2004, 토양세척에 의한 비소 및 중금속 오염토양의 복원, 지하수토양환경, 9(4), 52-61
  2. 김효식, 최상일, 2008, 사격장 납 오염토양 복원을 위한 토양세척 시 HCl과 EDTA의 영향연구, 지하수토양환경, 13(1), 60-66
  3. 백기태, 김도형, 서창열, 양중석, 이재영, 2007, 염산을 사용한 납 오염 토양의 토양세척에 의한 정화, 지하수토양환경, 12(3), 17-22
  4. 서상기, 이상화, 손정호, 장윤영, 2008, 폐광산 주변 오염토양 정화를 위한 실규모 토양 세척공정 적용, 지하수토양환경, 13(2), 70-75
  5. 이상환, 김을영, 서상기, 김권보, 이종근, 2008, 토양세척법에 의한 중금속오염 폐탄처리장 토양의 정화 :세척액의 선정, 지하수 토양환경, 13(2), 44-53
  6. 이종열, 김용수, 권영호, 공성호, 박신영, 이창환, 성혜련, 2004, EDTA와 붕산 혼합용출제를 이용한 중금속으로 오염된 토양의 처리에 관한연구(1) : 납, 지하수토양환경, 9(4), 1-7
  7. 이현호, 백기태, 양지원, 2003, 새로운 순환방식을 적용한 동전기 정화기술에 의한 오염토양내의 납제거, 지하수토양환경, 8(1), 9-16
  8. 최정찬, 2006, 울산 폐철광산 광미 안정화를 위한 인회석의 중금속 제거 실내실험, 지하수토양환경, 11(4), 1-9
  9. 황정성, 최상일, 한상근, 2005, 폐 철광산주변 비소로 오염된 토양에 대한 연속 세척기법의 적용, 지하수토양환경, 10(1), 58-64
  10. 한상재, 김수삼, 2001 ,중금속 오염토의 Electrokinetic 정화처리시 pH 발현과 납제거의 전극 간 특성, 지하수토양환경, 6(4), 13-23
  11. 환경부, 2007, 오염토양정화방법 가이드라인, 환경부
  12. Abumaizar, R.J. and Edward H.S., 1999, Heavy metal contaminants removal by soil washing, J. Hazard Mater., 70, 71-86 https://doi.org/10.1016/S0304-3894(99)00149-1
  13. Cline, S.R. and Reed, B.R., 1995, Lead Remova1 from Soils via Bench-Scale Soil Washing Techniques, J. Environ. Eng., 121, 700-705 https://doi.org/10.1061/(ASCE)0733-9372(1995)121:10(700)
  14. Giergiczny, Z. and Krol, A., 2008, Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites, J. Hazard Mater., 160, 247-255 https://doi.org/10.1016/j.jhazmat.2008.03.007
  15. Hansen, H.K., Rojo, A., and Ottosen, L.M., 2005, Electrodialytic remediation of copper mine tailings, J. Hazard Mater., 117, 179-183 https://doi.org/10.1016/j.jhazmat.2004.09.014
  16. Kim, C.S., Lee, Y.W., and Ong, S.K., 2003, Factors affecting EDTA extraction of lead from lead-contaminated soils, Chemosphere, 51, 845-853 https://doi.org/10.1016/S0045-6535(03)00155-3
  17. Labanowski, J., Monna, F., Bermond, A., Cambier, P., Femandez, C., Lamy, I., and Oort, F.v., 2008, Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in ametal-contaminated soil: EDTA vs. citrate, Enviorn. Pollut., 152, 693-701 https://doi.org/10.1016/j.envpol.2007.06.054
  18. Li, Z., Yu, J.W., and Neretnieks, I., 1997, Removal of Pb(II), Cd(II) and Cr(III) from sand by electromigration, J. Hazard Mater., 55, 295-304 https://doi.org/10.1016/S0304-3894(97)00021-6
  19. Malviya, R. and Chaudhary, R., 2004, Study of treatment effectiveness of solidification/stabilization process for waste bearing heavy metals, J. Mater. Cyc., 6, 147-153 https://doi.org/10.1007/s10163-004-0113-2
  20. Moutsatsou, A., Gregou, M., Matsas, D., and Protonotarios, D., 2006, Washing as a remediation technology applicable in soils heavily polluted by mining-metallurgical activities, Chemosphere, 63, 1632-1640 https://doi.org/10.1016/j.chemosphere.2005.10.015
  21. Peters, R.W., 1999, Chelant extraction of heavy metals from contaminated soils, J. Hazard Mater., 66, 151-210 https://doi.org/10.1016/S0304-3894(99)00010-2
  22. Wu, L.H., Lao, T.M. , Christie, P., and Wong, M.H., 2003, Effects of EDTA and low molecular weight organic acid on soil solution properties of a heavy metal polluted soil, Chemosphere, 50, 819-822 https://doi.org/10.1016/S0045-6535(02)00225-4