• 제목/요약/키워드: Rail pressure

검색결과 345건 처리시간 0.028초

디젤엔진에서 노즐 홀 형상효과의 실험적 연구 (Experimental Study of the Effects of Nozzle Hole Geometry for di Diesel Engine)

  • 구건우;이영진;김인수;이충원
    • 한국분무공학회지
    • /
    • 제12권3호
    • /
    • pp.154-159
    • /
    • 2007
  • Spray tip penetration and spray angle for one main injection were measured at the atmospheric condition with the fuel injection pressure of 270 bar and 540 bar. It investigates an effect of different nozzle hole geometry of conventional cylindrical one and those of elliptical ones. Injection period represented by injector pulse drive was fixed at 1ms. From the result of this study, it is shown that spray tip penetration becomes shorter and spray angle becomes wider with the elliptical nozzle hole geometry due to fast break-up of a fuel liquid column.

  • PDF

Interior Noise Characteristics in Japanese, Korean and Chinese Subways

  • Soeta, Yoshiharu;Shimokura, Ryota;Jeon, Jin Yong;Lee, Pyoung Jik
    • International Journal of Railway
    • /
    • 제6권3호
    • /
    • pp.120-124
    • /
    • 2013
  • The aim of this study was to clarify the characteristics of interior noise in Japanese, Korean, and Chinese subways. The octave-band noise levels, A-weighted equivalent continuous sound pressure level ($L_{Aeq}$) and parameters extracted from interaural cross-correlation/autocorrelation functions (ACF/IACFs) were analyzed to evaluate the noise inside running train cars quantitatively and qualitatively. The average $L_{Aeq}$ was 72-83 dBA. The IACF/ACF parameters of the noise showed variations in their values, suggesting they are affected by the characteristics of the trains running, wheel-rail interaction, and cross-section of the tunnels.

Bending and buckling of a rectangular porous plate

  • Magnucki, K.;Malinowski, M.;Kasprzak, J.
    • Steel and Composite Structures
    • /
    • 제6권4호
    • /
    • pp.319-333
    • /
    • 2006
  • A rectangular plate made of a porous material is the subject of the work. Its mechanical properties vary continuously on the thickness of a plate. A mathematical model of this plate, which bases on nonlinear displacement functions taking into account shearing deformations, is presented. The assumed displacement field, linear geometrical and physical relationships permit to describe the total potential energy of a plate. Using the principle of stationarity of the total potential energy the set of five equilibrium equations for transversely and in-plane loaded plates is obtained. The derived equations are used for solving a problem of a bending simply supported plate loaded with transverse pressure. Moreover, the critical load of a bi-axially in-plane compressed plate is found. In both cases influence of parameters on obtained solutions such as a porosity coefficient or thickness ratio is analysed. In order to compare analytical results a finite element model of a porous plate is built using system ANSYS. Obtained numerical results are in agreement with analytical ones.

압축 착화 엔진의 중부하 운전 영역에서 디젤 및 폐식용유 바이오디젤 연소 시 발생하는 입자상 물질에 관한 특성 비교 (Comparison of Particulate Matters in a Compression Ignition Engine under Mid-load Condition Fuelled with Diesel and Biodiesel fuel)

  • 황준식;정용진;;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.29-31
    • /
    • 2013
  • In this study, the characteristics of particulate matters (PM) from diesel and biodiesel fuel combustion was experimentally investigated. The experiment was performed in a single cylinder common-rail compression ignition engine. The fuels were injected at -5 CAD (Crank angle degree) ATDC (After top dead center) with 80 MPa injection pressure. Size distribution of PM was measured by scanning mobility particle sizer (SMPS) and morphology of PM was studied by transmission electron microscopy (TEM). PM from biodiesel shows lower emission level and smaller primary particles.

  • PDF

디젤엔진의 운전인자 변화에 따른 엔진의 성능특성에 관한 연구 (A Study on Engine Performance Characteristics with Variation of Operating Condition in Diesel Engine)

  • 김기복
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.645-651
    • /
    • 2020
  • In this study, It is necessary that we should study on more effective use about reciprocating engines because there are huge increase of air pollution. Diesel Engine is operated by injecting fuel directly to combustion chamber with high pressure. Diesel Engine has greater thermal efficiency and durability than Gasoline Engine. Also, Diesel Engine emitted low harmful exhaust witch caused by Gasoline Engine. There are many ways to improve of performance and decrease of harmful exhaust by controlling injection timing, changing amount of fuel and engine speed and so on. Especially, development and application of common rail direct injection Engine cause the increase of thermal efficiency by controlling a various of operating conditions. In this study we analyze characteristics of performance by changing a various of operating conditions.

상단 아치 형상 중실 오스테나이트계 스테인리스강의 2단 인발 공정 최적화 (Optimization of Two-Step Cold Drawing for Upper Arch-Shape Solid Type Austenitic Stainless Steel)

  • 배성준;김정훈;홍성박;홍성규;남궁정;이광석
    • 소성∙가공
    • /
    • 제31권6호
    • /
    • pp.394-403
    • /
    • 2022
  • In the automotive industry, cold-drawn austenitic stainless steel is commonly used to handle high fuel pressures in gasoline direct injection (GDI) engines. In this study, we analyzed the effects of main process variables such as cross-sectional shape, drawing speed and friction coefficient on the microstructure, hardness and residual stress of the drawn material in the two-step cold drawing process. By changing the cross-sectional shape in the first-step cold drawing, the possibility of improving the shape accuracy or physical properties of the finally cold-drawn fuel rail pressure sensor product was investigated.

작동 연료온도가 Bypass type 피에조 인젝터의 분사 특성에 미치는 영향 (Effects of Working Fuel Temperature on Injection Characteristics of Bypass Type Piezo Injector)

  • 조인수;이진욱
    • 한국분무공학회지
    • /
    • 제24권2호
    • /
    • pp.66-72
    • /
    • 2019
  • Diesel vehicles suffer from poor starting and running problems at cold temperatures. Diesel vehicles have the characteristic that CO and PM are reduced or similarly discharged when going from low temperature to high temperature. In this study, a bypass type piezo injector for electronic control based common rail injection system was used. Numerical analysis using injector drive analysis model was performed to analyze injector drive and internal fuel flow characteristics according to fuel temperature change. The results show that the rate of density change due to the fuel temperature is proportional, and that the effect of the kinematic viscosity is relatively large between $-20^{\circ}C$ and $0^{\circ}C$. Comparing the results of temperature condition at $0^{\circ}C$ and $20^{\circ}C$, it is considered that the viscosity is more correlated with the needle displacement than the pressure chamber of the delivery chamber.

고속화에 따른 철도터널의 단면규모 결정요소에 대한 고찰 (A Study on the Principal Factors of Rail Tunnel Cross-Section Design due to High Speed)

  • 류동훈;이현정;한상연;신현일;정병률;송충렬
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1487-1501
    • /
    • 2011
  • Recently, fast-growing up railway transportations. Because, regional traffic congestion problem solving and a period of rapid expansion to meet the demand of industries. In addition the government also suggest to new paradigm for the future 'Low Carbon, Green Growth' is presented as a new national vision. To meet the social needs and the time demands, Last of the railway increase very long tunnels and huge deep tunnels. Especially this trend accelerated high speed up in the tunnel, the revision of design criteria and research challenges are being actively improved. Mainly in the tunnel cross-section was under the control of the vehicle train speed 150km/hr by the construction of the vehicle cross-section of the tunnel. More than 200km/hr rail tunnel depending on the vehicle's speed caused the tunnel to the pressure fluctuations will be governed by the aerodynamic changes. Considering the economy to ensure the optimum cross-section of the railway tunnel to the description scheme is selected cross-section of the railway tunnel to determine the size domestic or international railway tunnel for the elements((based on fast Algorithm design criteria, the center line spacing, streetcar line, cross-sectional shape, sectoral issues, such as interface and aerodynamics) based on design practices and to review results. In this study, to propose guidelines depending on the size of a railway tunnel cross section for the size of the determining reasonable factors when designing the railway tunnel and cost-effective standards guidelines.

  • PDF

고속 솔레노이드의 응답특성에 관한 연구 (A Study on the Response Characteristics of a High Speed Solenoid)

  • 조규학
    • 수산해양교육연구
    • /
    • 제12권2호
    • /
    • pp.142-151
    • /
    • 2000
  • The studies on the electronic control fuel injection system for a DI diesel engine have done for reducing the exhaust emission and improving fuel consumption. The electronic control fuel injection system is classified into a common rail system, a unit injector system and a high pressure injection system. The characteristics of these systems are largely depends on the operating characteristics of its solenoid that have high speed on-off operation. In order to improve these characteristics of fuel injection system, it is necessary to design the optimal shape of solenoid and select the input method of its power source. It was proposed HELENOID, COLENOID, DISOLE, and Multipole Solenoid in the studies of design for the optimal shape of solenoid. The studies on the energizing method, input method for power of solenoid were dealt with the conventional energizing method, the chopping method and the pre-energizing method. In order to find out the high response characteristics of solenoid, it is necessary to test the performance of optimally designed solenoid with a new energizing method. In this paper, the solenoid of multi-pole type with plat armature and its power control unit to control input current by the chopping method designed, and its response tests were performed according to its energizing conditions. As a result, the maximum input current for solenoid was controlled by the period of first stage exciting current and chopping duty ratio of control stage exciting current, and the fastest "on" time was able to get 0.46ms. The conditions of fastest "on" time was 0.3ms for first stage exciting current, 0.16ms for control exciting current and 75% for chopping duty ratio.

  • PDF

대형침목을 이용한 터널/토공 접속구간의 보강효과 (Effectiveness of Reinforcement for Transitional Zone between Tunnel and Earthwork Using the Large Sleeper)

  • 최찬용;이진욱;김현기
    • 한국철도학회논문집
    • /
    • 제13권2호
    • /
    • pp.214-221
    • /
    • 2010
  • 철도 선로에서 대표적인 취약개소로 분류하고 있는 터널-토공 접속구간은 하부 지지강성의 차이로 인하여 강성이 작은 구간에서 더 큰 침하가 발생하여 선로의 부등침하를 발생시켜 지속적인 유지보수 작업을 실시하여야 한다. 본 논문에서는 실제 현장구간의 터널-토공 접속구간에 대하여 도상자갈부에 설치된 일반 침목을 약 20m 대형침목으로 교체 후 윤중과 침목 침하량을 측정하여 개선효과를 비교하였다. 또한 수치해석을 이용하여 침목 크기와 간격 등을 변화시켜 레일압력, 도상 침하량 그리고 도상압력을 비교하였다. 현장계측과 수치해석결과 대형침목으로 교체한 경우 일반침목에 비해 윤중변동율과 침하량 등에서 약 10%의 개선효과가 있는 것 을 확인할 수 있었다. 또한 수치해석결과 대형침목의 경우 일반침목에 비해 레일저부압력, 침목침하량, 도상압력이 각각 9.3%, 4%, 14.5% 감소되었으며, 이중에서 도상압력이 가장 많이 감소되는 것을 확인하였다.