• 제목/요약/키워드: Radiological Engineering

검색결과 777건 처리시간 0.025초

State-of-the-art and challenges of non-destructive techniques for in-situ radiological characterization of nuclear facilities to be dismantled

  • Amgarou, Khalil;Herranz, Margarita
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3491-3504
    • /
    • 2021
  • This paper reports on the state-of-the-art of the main non-destructive assay (NDA) techniques usually used for in-situ radiological characterization of nuclear facilities subject to a decommissioning programme. For the sake of clarity and coherence, they have been classified as environmental radiation monitoring, surface contamination measurements, gamma spectrometry, passive neutron counting and radiation cameras. Particular mention is also made here to the various challenges that each of these techniques must currently overcome, together with the formulation of some proposals for a potential evolution in the future.

Cytoprotective Activity of Carpinus tschonoskii against H$_2$O$_2$ Induced Oxidative Stress

  • Zhang, Rui;Kang, Kyoung-Ah;Piao, Mei-Jing;Park, Jae-Woo;Shin, Taek-Yun;Yoo, Byoung-Sam;Yang, Young-Taek;Hyun, Jin-Won
    • Natural Product Sciences
    • /
    • 제13권2호
    • /
    • pp.118-122
    • /
    • 2007
  • We have studied the cytoprotective effect on H$_2$O$_2$ induced oxidative stress from leaves of Carpinus tschonoskii. The methanol extract of Carpinus tschonoskii was found to scavenge intracellular reactive oxygen species (ROS) using flow cytometry and confocal microscope. This extract prevented lipid peroxidation and thus reduced cell death of Chinese hamster lung fibroblast (V79-4) induced by H$_2$O$_2$ treatment. The extract increased catalase activity and phosphorylation of extracellular signal regulated kinase (ERK). Taken together, the results suggest that Carpinus tschonoskii protects V79-4 cells against oxidative damage by H$_2$O$_2$ through scavenging ROS.

휘진성 형광체 (BaFBr:$Eu^{2+}$)를 이용한 영상의학분야에서 산란선 특성에 관한 평가 (Evaluation of Scatter Radiation in Digital Radiological Condition by using Photostimulated Luminescence (BaFBr:$Eu^{2+}$))

  • 민정환;한성규;김정민;이주아;김기원;정회원
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제37권2호
    • /
    • pp.85-91
    • /
    • 2014
  • 본 연구는 휘진성 형광체를 이용하여 디지털 의료영상시스템의 환경에서 산란선에 의한 영상 특성을 연구하였다. 아크릴 팬텀을 사용하여 관전압 (50 kVp부터 120 kVp까지), 조사야($4{\times}4cm^2$부터 $26{\times}26cm^2$까지), 팬텀의 두께 (1 cm부터 25 cm까지)를 각각 변화시켜 실험을 실시하였다. 실험 방법은 영상을 ImageJ와 특성곡선을 사용하여 분석하였다. 관전압은 50 kVp ~ 70 kVp에서는 관전압이 증가하면서 일차선에 대한 산란선의 비율도 증가하지만, 80 kVp부터는 일정한 비율을 나타내었다. 조사야가 증가함에 따라 일차선에 대한 산란선의 비율은 증가한다. 팬텀 두께가 증가함에 따라 산란선이 증가한다.

Radiological Safety Assessment of Transporting Radioactive Wastes to the Gyeongju Disposal Facility in Korea

  • Jeong, Jongtae;Baik, Min Hoon;Kang, Mun Ja;Ahn, Hong-Joo;Hwang, Doo-Seong;Hong, Dae Seok;Jeong, Yong-Hwan;Kim, Kyungsu
    • Nuclear Engineering and Technology
    • /
    • 제48권6호
    • /
    • pp.1368-1375
    • /
    • 2016
  • A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI), Daejeon, Korea. We considered two kinds of wastes: (1) operation wastes generated from the routine operation of facilities; and (2) decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incidentfree (normal) transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

Design of a scintillator-based prompt gamma camera for boron-neutron capture therapy: Comparison of SrI2 and GAGG using Monte-Carlo simulation

  • Kim, Minho;Hong, Bong Hwan;Cho, Ilsung;Park, Chawon;Min, Sun-Hong;Hwang, Won Taek;Lee, Wonho;Kim, Kyeong Min
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.626-636
    • /
    • 2021
  • Boron-neutron capture therapy (BNCT) is a cancer treatment method that exploits the high neutron reactivity of boron. Monitoring the prompt gamma rays (PGs) produced during neutron irradiation is essential for ensuring the accuracy and safety of BNCT. We investigate the imaging of PGs produced by the boron-neutron capture reaction through Monte Carlo simulations of a gamma camera with a SrI2 scintillator and parallel-hole collimator. GAGG scintillator is also used for a comparison. The simulations allow the shapes of the energy spectra, which exhibit a peak at 478 keV, to be determined along with the PG images from a boron-water phantom. It is found that increasing the size of the water phantom results in a greater number of image counts and lower contrast. Additionally, a higher septal penetration ratio results in poorer image quality, and a SrI2 scintillator results in higher image contrast. Thus, we can simulate the BNCT process and obtain an energy spectrum with a reasonable shape, as well as suitable PG images. Both GAGG and SrI2 crystals are suitable for PG imaging during BNCT. However, for higher imaging quality, SrI2 and a collimator with a lower septal penetration ratio should be utilized.

Source and LVis based coincidence summing correction in HPGe gamma-ray spectrometry

  • Lee, Jieun;Kim, HyoJin;Kye, Yong Uk;Lee, Dong Yeon;Kim, Jeung Kee;Jo, Wol Soon;Kang, Yeong-Rok
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1754-1759
    • /
    • 2022
  • The activity of gamma-ray emitting nuclides is calculated assuming that each gamma-ray is detected individually; thus, the magnitude of the coincidence summing signal must be considered during activity calculations. Here, the correction factor for the coincidence summing effect was calculated, and the detection efficiencies of two HPGe detectors were compared. The CANBERRA Inc. GC4018 high-purity Ge detector provided an estimate for the peak-to-total ratio using a point source to determine the coincidence summing correction factor. The ORTEC Inc. GEM60 high-purity Ge detector uses EFFTRAN in LVis to obtain the parameters of the detector and source model and the gamma-gamma and gamma-X match estimates, in order to determine the coincidence summing correction factor. Nuclide analyses, radioactivity comparisons, and analyses of reference material samples were performed utilizing certified reference materials to accurately determine the detection efficiencies. For both Co-60 and Y-88, the detection efficiency for a point source increased by an average of at least 12-13%, whereas the detection efficiency determined using LVis increased by an average of at least 13-15%. The calculated radioactivity values of the certified reference material and reference material samples were accurate to within 3% and 6% of the measured values, respectively.

Second intercomparison on electron paramagnetic resonance (EPR) retrospective dosimetry in Korea using hydroxyapatite

  • HyoJin Kim;Jae Seok Kim;Byeong Ryong Park;Seongjae Jang;Han-Ki Jang;Ki-Taek Han;Hoon Choi;Jeongin Kim;In Jung Kim;Yunho Kim;Wi-Ho Ha;Jungil Lee;Yeong-Rok Kang
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4576-4582
    • /
    • 2023
  • The Korea retrospective dosimetry (KREDOS)-electron paramagnetic resonance (EPR) group undertook an intercomparison investigation utilizing hydroxyapatite. This analysis involved four institutions: the Korea Institute of Radiological and Medical Sciences, Dongnam Institute of Radiological and Medical Sciences, Korean Association for Radiation Application, and Radiation Health Institute of Korea Hydro & Nuclear Power. Following the irradiation of the hydroxyapatite sample, the recorded build-up was analyzed. To validate the reliability of the EPR dosimetry findings and enhance its operational performance, a hydroxyapatite dose-response curve was plotted and dosimetry was performed for a blind sample. The proficiency of each laboratory was assessed by employing an interlaboratory comparison methodology. This involved a comparative analysis of the measurement results by calculating the relative bias, z-score, and En value. The results submitted by the participating laboratories demonstrated satisfactory ratings for doses of 1.006, 3.999, and 6.993 Gy. Following the second intercomparison, efforts to optimize their hydroxyapatite-EPR dosimetry systems are underway in the participating laboratories. The current assessment of hydroxyapatite dose yielded the foundational data required to establish the parameters of dental dosimetry. In future, the third intercomparison experiment will be conducted for exploring other materials.

On using computational versus data-driven methods for uncertainty propagation of isotopic uncertainties

  • Radaideh, Majdi I.;Price, Dean;Kozlowski, Tomasz
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1148-1155
    • /
    • 2020
  • This work presents two different methods for quantifying and propagating the uncertainty associated with fuel composition at end of life for cask criticality calculations. The first approach, the computational approach uses parametric uncertainty including those associated with nuclear data, fuel geometry, material composition, and plant operation to perform forward depletion on Monte-Carlo sampled inputs. These uncertainties are based on experimental and prior experience in criticality safety. The second approach, the data-driven approach relies on using radiochemcial assay data to derive code bias information. The code bias data is used to perturb the isotopic inventory in the data-driven approach. For both approaches, the uncertainty in keff for the cask is propagated by performing forward criticality calculations on sampled inputs using the distributions obtained from each approach. It is found that the data driven approach yielded a higher uncertainty than the computational approach by about 500 pcm. An exploration is also done to see if considering correlation between isotopes at end of life affects keff uncertainty, and the results demonstrate an effect of about 100 pcm.

VALIDATION OF NUMERICAL METHODS TO CALCULATE BYPASS FLOW IN A PRISMATIC GAS-COOLED REACTOR CORE

  • Tak, Nam-Il;Kim, Min-Hwan;Lim, Hong-Sik;Noh, Jae Man;Drzewiecki, Timothy J.;Seker, Volkan;Downar, Thomas J.;Kelly, Joseph
    • Nuclear Engineering and Technology
    • /
    • 제45권6호
    • /
    • pp.745-752
    • /
    • 2013
  • For thermo-fluid and safety analyses of a High Temperature Gas-cooled Reactor (HTGR), intensive efforts are in progress in the developments of the GAMMA+ code of Korea Atomic Energy Research Institute (KAERI) and the AGREE code of the University of Michigan (U of M). One of the important requirements for GAMMA+ and AGREE is an accurate modeling capability of a bypass flow in a prismatic core. Recently, a series of air experiments were performed at Seoul National University (SNU) in order to understand bypass flow behavior and generate an experimental database for the validation of computer codes. The main objective of the present work is to validate the GAMMA+ and AGREE codes using the experimental data published by SNU. The numerical results of the two codes were compared with the measured data. A good agreement was found between the calculations and the measurement. It was concluded that GAMMA+ and AGREE can reliably simulate the bypass flow behavior in a prismatic core.