DOI QR코드

DOI QR Code

State-of-the-art and challenges of non-destructive techniques for in-situ radiological characterization of nuclear facilities to be dismantled

  • Amgarou, Khalil (Commissariat a l'energie atomique et aux energies alternatives (CEA), DES/DDSD/DTPI/STRD/GRDT) ;
  • Herranz, Margarita (Nuclear Engineering and Fluid Mechanics Department. University of the Basque Country (UPV/EHU))
  • Received : 2021.01.11
  • Accepted : 2021.05.23
  • Published : 2021.11.25

Abstract

This paper reports on the state-of-the-art of the main non-destructive assay (NDA) techniques usually used for in-situ radiological characterization of nuclear facilities subject to a decommissioning programme. For the sake of clarity and coherence, they have been classified as environmental radiation monitoring, surface contamination measurements, gamma spectrometry, passive neutron counting and radiation cameras. Particular mention is also made here to the various challenges that each of these techniques must currently overcome, together with the formulation of some proposals for a potential evolution in the future.

Keywords

Acknowledgement

This study has been funded by the European INSIDER project, through the Euratom Research and Training Programme 2014-2018, under grant agreement No 755554.

References

  1. International Atomic Energy Agency, IAEA Safety Glossary: 2018 Edition, 2019. Vienna.
  2. Nuclear Energy Agency, Organisation for Economic Co-Operation and Development, R&D and Innovation Needs for Decommissioning Nuclear Facilities, 2014. Report No. 7191.
  3. International Atomic Energy Agency, Radiological Characterization of Shut Down Nuclear Reactors for Decommissioning Purposes, Technical Report Series No. 389, 1998. Vienna.
  4. F. Aspe, R. Idoeta, G. Auge, M. Herranz, Classification and categorization of the constrained environments in nuclear/radiological installations under decommissioning and dismantling processes, Prog. Nucl. Energy 124 (2020) 102247.
  5. S. Mikami, T. Maeyama, Y. Hoshide, R. Sakamoto, S. Sato, N. Okuda, T. Sato, H. Takemiya, K. Saito, The air dose rate around the Fukushima Dai-ichi Nuclear Power Plant: its spatial characteristics and temporal changes until December 2012, J. Environ. Radioact. 139 (2015) 250-259. https://doi.org/10.1016/j.jenvrad.2014.08.020
  6. R. Haudebourg, P. Fichet, A non-destructive and on-site digital autoradiography-based tool to identify contaminating radionuclide in nuclear wastes and facilities to be dismantled, J. Radioanal. Nucl. Chem. 309 (2016) 551-561. https://doi.org/10.1007/s10967-015-4610-7
  7. K. Amgarou, V. Paradiso, A. Patoz, F. Bonnet, J. Handley, P. Couturier, F. Becker, N. Menaa, A comprehensive experimental characterization of the iPIX gamma imager, J. Instrum. 11 (2016) P08012. https://doi.org/10.1088/1748-0221/11/08/P08012
  8. S.M. Baschenko, Remote optical detection of alpha particle sources, J. Radiol. Prot. 24 (2004) 75-82. https://doi.org/10.1088/0952-4746/24/1/006
  9. M.J. Cieslak, K.A.A. Gamage, R. Glover, Coded-aperture imaging systems: past, present and future development - A review, Radiat. Meas. 92 (2016) 59-71. https://doi.org/10.1016/j.radmeas.2016.08.002
  10. O. Gal, C. Izac, F. Laine, A. Nguyen, CARTOGAM: a portable gamma camera, Nucl. Instrum. Methods A 387 (1997) 297-303. https://doi.org/10.1016/S0168-9002(96)01013-3
  11. G.F. Knoll, Radiation Detection and Measurement, fourth ed., John Wiley & Sons, 2010.
  12. F. Lamadie, F. Delmas, C. Mahe, P. Giron es, C. Le Goaller, J.R. Costes, Remote alpha imaging in nuclear installations: new results and prospects, IEEE Trans. Nucl. Sci. 52 (2005) 3035-3039. https://doi.org/10.1109/TNS.2005.862911
  13. G. Kindleben, R. Baumann, Decommissioning of a MOX fuel fabrication facility: criticality safety aspects, in: Proceedings of the Seventh International Conference on Nuclear Criticality Safety, 2003. Tokai, Ibaraki, Japan, October 20-24.
  14. R.S. Woolf, B.F. Phlips, A.L. Hutcheson, E.A. Wulf, Fast-neutron, coded-aperture imager, Nucl. Instrum. Methods A 784 (2015) 398-404. https://doi.org/10.1016/j.nima.2015.01.084
  15. S. Takeda, Y. Ichinohe, K. Hagino, H. Odaka, T. Yuasa, S. IkeIshikawa, T. Fukuyama, S. Saito, T. Sato, G. Sato, S. Watanabe, M. Kokubun, T. Takahashi, M. Yamaguchi, H. Tajima, T. Tanaka, K. Nakazawa, Y. Fukazawa, T. Nakano, Applications and imaging techniques of a Si/CdTe Compton gamma-ray camera, Phys. Procedia 37 (2012) 859-866. https://doi.org/10.1016/j.phpro.2012.04.096
  16. B.A. Cattle, A.S. Fellerman, R.M. West, On the detection of solid deposits using gamma ray emission tomography with limited data, Meas. Sci. Technol. 15 (2004) 1429-1439. https://doi.org/10.1088/0957-0233/15/7/027
  17. D. Reilly, N. Ensslin, H. Jr Smith, Passive Non-destructive Assay of Nuclear Materials, Los Alamos National Laboratory, 1991. NUREG/CR-5550/LA-UR-90-732.
  18. N. Tsoulfanidis, S. Lansberger, Measurement and Detection of Radiation, fourth ed., CRC Press, 2015.
  19. M. Abilama, M. Bates, A. Lohstroh, Investigating the lifetime of bromine-quenched G.M. Counters with temperature, Nucl. Instrum. Methods A 795 (2015) 12-18. https://doi.org/10.1016/j.nima.2015.05.049
  20. M. Boscardin, M. Bruzzi, A. Candelori, G.-F.D. Betta, E. Focardi, V. Khomenkov, C. Piemonte, S. Ronchin, C. Tosi, N. Zorzi, Radiation hardness and charge collection efficiency of lithium irradiated thin silicon diodes, IEEE Trans. Nucl. Sci. 52 (2005) 1048-1053. https://doi.org/10.1109/TNS.2005.852721
  21. M.J. Tahmasebi Birgani, F. Seif, N. Chegeni, M.R. Bayatiani, Determination of the effective atomic and mass numbers for mixture and compound materials in high energy photon interactions, J. Radioanal. Nucl. Chem. 292 (2012) 1367-1370. https://doi.org/10.1007/s10967-012-1677-2
  22. U. Oren, L. Herrnsdorf, M. Gunnarsson, S. Mattsson, C.L. Raaf, Can an energy-compensated solid-state x-ray detector be used for radiation protection applications at higher photon energies? Radiat. Protect. Dosim. 169 (2016) 292-296. https://doi.org/10.1093/rpd/ncv485
  23. International Commission on Radiation Units and Measurements, Quantities and unit in radiation protection dosimetry, ICRU (Int. Comm. Radiat. Units Meas.) Rep. 51 (1993).
  24. International Commission on Radiological Protection, Conversion coefficients for use in radiological protection against external radiation, ICRP (Int. Comm. Radiol. Prot.) Publ. 74 (1996).
  25. International Atomic Energy Agency, Compendium of Neutron Spectra and Detector Responses for Radiation Protection Purposes, Supplement to Technical Reports Series No. 318, 2001. Vienna.
  26. R.L. Bramblett, R.I. Ewing, T.W. Bonner, A new type of neutron spectrometer, Nucl. Instrum. Methods 9 (1960) 1-12. https://doi.org/10.1016/0029-554X(60)90043-4
  27. K. Amgarou, V. Lacoste, Response matrix evaluations of a passive Bonner sphere system used for neutron spectrometry at pulsed, intense and complex mixed fields, J. Instrum. 5 (2010) P09002. https://doi.org/10.1088/1748-0221/5/09/P09002
  28. International Organization for Standardization, Measurement of Radioactivity - Measurement and Evaluation of Surface Contamination - Part 1: General Principles, June 2017. NF ISO 7503-1.
  29. International Organization for Standardization, Measurement of Radioactivity - Measurement and Evaluation of Surface Contamination - Part 2: Test Method Using Wipe-Test Samples, June 2017. NF ISO 7503-2.
  30. International Organization for Standardization, Measurement of Radioactivity - Measurement and Evaluation of Surface Contamination - Part 3: Apparatus Calibration, June 2017. NF ISO 7503-3.
  31. P.H. Burgess, Handbook on Measurement Methods and Strategies at Very Low Levels and Activities, European Commission, Nuclear Safety and the Environment, 1998. Report EUR 17624.
  32. X. Tuo, K. Mu, Z. Li, X. Li, Tritium monitor based on gas-flow proportional counter, J. Nucl. Sci. Technol. 45 (2008) 171-174.
  33. Y. Morishita, K. Hoshi, T. Torii, Evaluation of an ultra-thin plastic scintillator to detect alpha and beta particle contamination, Nucl. Instrum. Methods A 966 (2020) 163795. https://doi.org/10.1016/j.nima.2020.163795
  34. J. Venara, M. Ben Mosbah, C. Mahe, J. Astier, S. Adera, M. Cuozzo, V. Goudeau, Design and development of a portable β-spectrometer for 90Sr activity measurements in contaminated matrices, Nucl. Instrum. Methods A 953 (2020) 163081. https://doi.org/10.1016/j.nima.2019.163081
  35. J. Boson, G. Agren, L. Johansson, A detailed investigation of HPGe detector response for improved Monte Carlo efficiency calculations, Nucl. Instrum. Methods A 587 (2008) 304-314. https://doi.org/10.1016/j.nima.2008.01.062
  36. D. Sahin, K. Unlu, Modeling a gamma spectroscopy system and predicting spectra with Geant-4, J. Radioanal. Nucl. Chem. 282 (2009) 167-172. https://doi.org/10.1007/s10967-009-0317-y
  37. R. Venkataraman, F. Bronson, V. Atrashkevich, M. Field, B.M. Young, Improved detector response characterization method in ISOCS and LabSOCS, J. Radioanal. Nucl. Chem. 264 (2005) 213-219. https://doi.org/10.1007/s10967-005-0696-7
  38. G.A. Armantrout, A.E. Bradley, P.L. Phelps, Sensitivity problems in biological and environmental counting, IEEE Trans. Nucl. Sci. 19 (1972) 107-116.
  39. International Organization for Standardization, Guidance for Gamma Spectrometry Measurement of Radioactive Waste, NF EN ISO 19017, October 2017.
  40. S. Normand, A. Iltis, F. Bernard, T. Domenech, P. Delacour, Resistance to γ irradiation of LaBr3:Ce and LaCl3:Ce single crystals, Nucl. Instrum. Methods A 572 (2006) 754-759.
  41. M. Moszynski, A. Nassalski, A. Syntfeld-Kazuch, T. Szczensniak, W. Czarnacki, D. Wolski, G. Pausch, J. Stein, Temperature dependences of LaBr3(Ce), LaCl3(Ce) and NaI(Tl) scintillators, Nucl. Instrum. Methods A 588 (2006) 739-751.
  42. G. Bizarri, J.T.M. de Haas, P. Dorenbos, C.W.E. van Eijk, Scintillation properties of Ø 1×1 inch3 LaBr3: 5%Ce3+ crystal, IEEE Trans. Nucl. Sci. 53 (2006) 615-619. https://doi.org/10.1109/TNS.2006.870090
  43. H.O. Tekin, L.R.P. Kassab, S.A.M. Issa, M.M. Martins, L. Bontempo, G.R. da Silva Mattos, Newly developed BGO glasses: synthesis, optical and nuclear radiation shielding properties, Ceram. Int. 46 (2020) 11861-11873. https://doi.org/10.1016/j.ceramint.2020.01.221
  44. D.L. Upp, R.M. Keyser, T.R. Twomey, New cooling methods for HPGE detectors and associated electronics, J. Radioanal. Nucl. Chem. 264 (2005) 121-126. https://doi.org/10.1007/s10967-005-0684-y
  45. P.E. Tissot, L. Crowe, J. Colvin, T.L. Mann, A. Guerra, Design and testing of a pulse tube based cooling system for high purity germanium detectors, in: P. Kittel (Ed.), Advances in Cryogenic Engineering, vol. 43, Springer, Boston, MA, 1998.
  46. A. Pullia, F. Zocca, C. Cattadori, Single-transistor option for high-resolution γ-ray spectroscopy in hostile environments, IEEE Nucl. Sc. Symp. Conf. Rec. (2005) 387-390.
  47. S.H. Park, J.H. Ha, J.H. Lee, H.S. Kim, Y.H. Cho, S.D. Cheon, D.G. Hong, Effect of temperature on the performance of a CZT radiation detector, J. Kor. Phys. Soc. 56 (2010) 1079-1082. https://doi.org/10.3938/jkps.56.1079
  48. A. Cavallini, B. Fraboni, N. Auricchio, E. Caroli, W. Dusi, P. Chirco, M.P. Morigi, M. Zanarini, M. Hage-Ali, P. Siffert, P. Fougeres, Irradiation-induced defects in CdTe and CdZnTe detectors, Nucl. Instrum. Methods A 458 (2001) 392-399. https://doi.org/10.1016/S0168-9002(00)00931-1
  49. J.S. Beaumont, T.H. Lee, M. Mayorov, A fast-neutron coincidence collar using liquid scintillators for fresh fuel verification, J. Radioanal. Nucl. Chem. 314 (2017) 803-812. https://doi.org/10.1007/s10967-017-5412-x
  50. C. Cowles, S. Behling, P. Baldez, M. Folsom, R. Kouzes, V. Kukharev, A. Lintereur, S. Robinson, E. Siciliano, S. Stave, P. Valdez, Development of a lithium fluoride zinc sulfide based neutron multiplicity counter, Nucl. Instrum. Methods A 887 (2018) 59-63. https://doi.org/10.1016/j.nima.2018.01.015
  51. A. Di Fulvio, T.H. Shin, T. Jordan, C. Sosa, M.L. Ruch, S.D. Clarke, D.L. Chichester, S.A. Pozzi, Passive assay of plutonium metal plates using a fast-neutron multiplicity counter, Nucl. Instrum. Methods A 855 (2017) 92-101. https://doi.org/10.1016/j.nima.2017.02.082
  52. C. Eleon, F. Battiston, M. Bounaud, M. Ben Mosbah, C. Passard, B. Perot, Boron-coated straws imaging panel capability for passive and active neutron measurements of radioactive waste drums, IEEE Trans. Nucl. Sci. 67 (2020) 2096-2104. https://doi.org/10.1109/tns.2020.3010303
  53. M.J. Joyce, K.A.A. Gamage, M.D. Aspinall, F.D. Cave, A. Lavietes, Real-time, fast neutron coincidence assay of plutonium with a 4-channel multiplexed analyzer and organic scintillators, IEEE Trans. Nucl. Sci. 61 (2014) 1340-1348. https://doi.org/10.1109/TNS.2014.2313574
  54. R.T. Kouzes, J.H. Ely, A.T. Lintereur, E.R. Siciliano, Boron-10 based neutron coincidence counter for safeguards, IEEE Trans. Nucl. Sci. 61 (2014) 2608-2618. https://doi.org/10.1109/TNS.2014.2353619
  55. R.T. Kouzes, A.T. Lintereur, E.R. Siciliano, Progress in alternative neutron detection to address the helium-3 shortage, Nucl. Instrum. Methods A 784 (2015) 172-175. https://doi.org/10.1016/j.nima.2014.10.046
  56. H.O. Menlove, S.H. Menlove, S.J. Tobin, Fissile and fertile nuclear material measurements using a new differential die-away self-interrogation technique, Nucl. Instrum. Methods A 602 (2009) 588-593. https://doi.org/10.1016/j.nima.2009.01.157
  57. A. Ocherashvili, E. Roesgen, A. Beck, E.N. Caspi, M. Mosconi, J.- M. Crochemore, B. Pedersen, SNM detection by means of thermal neutron interrogation and a liquid scintillation detector, J. Instrum. 7 (2012) C03037. https://doi.org/10.1088/1748-0221/7/03/C03037
  58. H.M.O. Parker, J.S. Beaumont, M.J. Joyce, Passive, non-intrusive assay of depleted uranium, J. Hazard Mater. 364 (2019) 293-299. https://doi.org/10.1016/j.jhazmat.2018.08.018
  59. G.C. Rich, K. Kazkaz, H.P. Martinez, T. Gushue, Fabrication and characterization of a lithium-glass-based composite neutron detector, Nucl. Instrum. Methods A 794 (2015) 15-24. https://doi.org/10.1016/j.nima.2015.05.004
  60. B. Simony, B. Perot, C. Carasco, F. Jallu, N. Saurel, S. Colas, P. Girones, J. Collot, Passive neutron coincidence counting with plastic scintillators for the characterization of radioactive waste drums, IEEE Trans. Nucl. Sci. 64 (2017) 2719-2724. https://doi.org/10.1109/TNS.2017.2747119
  61. S. Stave, M. Bliss, R. Kouzes, A. Lintereur, S. Robinson, E. Siciliano, L. Wood, LiF/ZnS neutron multiplicity counter, Nucl. Instrum. Methods A 784 (2015) 208-212. https://doi.org/10.1016/j.nima.2015.01.039
  62. D.B. Pelowitz, MCNPXTM User's Manual, Version 2.7.0, Los Alamos National Laboratory, 2011. LA-CP-11-00438.
  63. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gomez Cadenas, I. Gonzalez, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, Geant4-a simulation toolkit, Nucl. Instrum. Methods A 506 (2003) 250-303. https://doi.org/10.1016/S0168-9002(03)01368-8
  64. E. Brun, F. Damian, C.M. Diop, E. Dumonteil, F.X. Hugot, C. Jouanne, Y.K. Lee, F. Malvagi, A. Mazzolo, O. Petit, J.C. Trama, T. Visonneau, A. Zoia, Tripoli-4®, CEA, EDF and AREVA reference Monte Carlo code, Ann. Nucl. Energy 82 (2015) 151-160. https://doi.org/10.1016/j.anucene.2014.07.053
  65. A Ferrari, P.R. Sala, A. Fasso, J. Ranft, FLUKA: a Multi-Particle Transport Code, CERN-2005-10, INFN/TC_05/11, SLAC-R-773.
  66. R. Rossa, A. Borella, S. Boden, W. Broeckx, Estimation of fissile material content in irradiated In-Pile Sections using neutron coincidence counters, EPJ Web Conf. 225 (2020), 06001.
  67. International Commission on Radiological Protection, 2007 Recommendations of the International Commission on Radiological Protection, vol. 103, ICRP Publication, 2007.
  68. H. Ardiny, S. Witwicki, F. Mondada, Autonomous exploration for radioactive hotspots localization taking account of sensor limitations, Sensors 19 (2019) 292. https://doi.org/10.3390/s19020292
  69. C. Ducros, G. Hauser, N. Mahjoubi, P. Girones, L. Boisset, A. Sorin, E. Jonquet, J.M. Falciola, A. Benhamou, RICA: a tracked robot for sampling and radiological characterization in the nuclear field, J. Field Robot. 34 (2017) 583-599. https://doi.org/10.1002/rob.21650
  70. M. Gianni, Towards expendable robot teaming in extreme environments, Int. J. Mech. Eng. Robot. Res. 8 (2019) 830-838. https://doi.org/10.18178/ijmerr.8.6.830-838
  71. D. Hellfeld, P. Barton, D. Gunter, A. Haefner, L. Mihailescu, K. Vetter, Realtime free-moving active coded mask 3d gamma-ray imaging, IEEE Trans. Nucl. Sci. 66 (2019) 2252-2260. https://doi.org/10.1109/tns.2019.2939948
  72. S. Mochizuki, J. Kataoka, L. Tagawa, Y. Iwamoto, H. Okochi, N. Katsumi, S. Kinno, M. Arimoto, T. Maruhashi, K. Fujieda, T. Kurihara, S. Ohsuka, First demonstration of aerial gamma-ray imaging using drone for prompt radiation survey in Fukushima, J. Instrum. 12 (2017) P11014. https://doi.org/10.1088/1748-0221/12/11/P11014
  73. I. Tsitsimpelis, C.J. Taylor, B. Lennox, M.J. Joyce, A review of ground-based robotic systems for the characterization of nuclear environments, Prog. Nucl. Energy 111 (2019) 109-124. https://doi.org/10.1016/j.pnucene.2018.10.023
  74. Y. Ueno, I. Takahashi, T. Ishitsu, T. Tadokoro, K. Okada, Y. Nagumo, Y. Fujishima, Y. Kometani, Y. Suzuki, K. Umegaki, Spectroscopic gamma camera for use in high dose environments, Nucl. Instrum. Methods A 822 (2016) 48-56. https://doi.org/10.1016/j.nima.2016.03.064
  75. K. Vetter, R. Barnowski, J.W. Cates, A. Haefner, T.H. Joshi, R. Pavlovsky, B.J. Quiter, Advances in nuclear radiation sensing: enabling 3-D gamma-ray vision, Sensors 19 (2019) 2541. https://doi.org/10.3390/s19112541
  76. V. Paradiso, K. Amgarou, N. Blanc de Lanaute, F. Bonnet, O. Beltramello, E. Lienard, 3-D localization of radioactive hotspots via portable gamma cameras, Nucl. Instrum. Methods A 910 (2018) 194-203. https://doi.org/10.1016/j.nima.2018.09.081
  77. R.K. Mortimer, H.O. Anger, C.A. Tobias, The Gamma-Ray Pinhole Camera with Image Amplifier, U.S. Atomic Energy Commission, University of California Radiation Laboratory, 1954. UCRL-2524.
  78. K. Sueoka, J. Kataoka, M. Takebe, Y. Iwamoto, M. Arimoto, M. Yoneyama, I. Yoda, T. Torii, Y. Sato, M. Kaburagi, Y. Terasaka, Development of a new pinhole camera for imaging in high dose-rate environments, Nucl. Instrum. Methods A 912 (2018) 115-118. https://doi.org/10.1016/j.nima.2017.10.082
  79. O.P. Ivanov, A.N. Sudarkin, V.E. Stepanov, L.I. Urutskoev, Portable X-ray and gamma-ray imager with coded mask: performance characteristics and methods of image reconstruction, Nucl. Instrum. Methods A 422 (1999) 729-734. https://doi.org/10.1016/S0168-9002(98)01026-2
  80. O. Gal, M. Gmar, O.P. Ivanov, F. Laine, F. Lamadie, C. Le Goaller, C. Mah e, E. Manach, V.E. Stepanov, Development of a portable gamma camera with coded aperture, Nucl. Instrum. Methods A 563 (2006) 233-237. https://doi.org/10.1016/j.nima.2006.01.119
  81. E. Caroli, J.B. Stephen, G. Di Cocco, L. Natalucci, A. Spizzichino, Coded aperture imaging in X- and gamma-ray astronomy, Space Sci. Rev. 45 (1987) 349-403. https://doi.org/10.1007/BF00171998
  82. S.R. Gottesman, E.E. Fenimore, New family of binary arrays for coded aperture imaging, Appl. Opt. 28 (1989) 4344-4352. https://doi.org/10.1364/AO.28.004344
  83. J. Braga, T. Villela, U.B. Jayanthi, F. D'Amico, J.A. Neri, A new mask-antimask coded-aperture telescope for hard x-ray astronomy, Exp. Astron. 2 (1991) 101-113. https://doi.org/10.1007/BF00576323
  84. S. Sun, Y. Liu, X. Ouyang, Near-field high-resolution coded aperture gamma-ray imaging with separable masks, Nucl. Instrum. Methods A 951 (2020) 163001. https://doi.org/10.1016/j.nima.2019.163001
  85. G. Amoyal, V. Schoepff, F. Carrel, V. Lourenco, D. Lacour, T. Branger, Metro-logical characterization of the GAMPIX gamma camera, Nucl. Instrum. Methods A 944 (2019) 162568. https://doi.org/10.1016/j.nima.2019.162568
  86. P. Russo, F. Di Lillo, V. Corvino, P.M. Frallicciardi, A. Sarno, G. Mettivier, CdTe compact gamma camera for coded aperture imaging in radioguided surgery, Phys. Med. 69 (2020) 223-232. https://doi.org/10.1016/j.ejmp.2019.12.024
  87. V. Paradiso, K. Amgarou, N. Blanc de Lanaute, V. Schoepff, G. Amoyal, C. Mahe, O. Beltramello, E. Li enard, A panoramic coded aperture gamma camera for radioactive hotspots localization, J. Instrum. 12 (2017) P11010. https://doi.org/10.1088/1748-0221/12/11/P11010
  88. Y.F. Du, Z. He, G.F. Knoll, D.K. Wehe, W. Li, Evaluation of a Compton scattering camera using 3-D position sensitive CdZnTe detectors, Nucl. Instrum. Methods A 457 (2001) 203-211. https://doi.org/10.1016/S0168-9002(00)00669-0
  89. M. Frandes, B. Timar, D. Lungeanu, Image reconstruction techniques for Compton scattering based imaging: an overview, Curr. Med. Imag. Rev. 12 (2016) 95-105. https://doi.org/10.2174/1573405612666160128233916
  90. Y. Sato, Y. Tanifuji, Y. Terasaka, H. Usami, M. Kaburagi, K. Kawabata, W. Utsugi, H. Kikuchi, S. Takahira, T. Torii, Radiation imaging using a compact Compton camera inside the Fukushima Daiichi nuclear power station building, J. Nucl. Sci. Technol. 55 (2018) 965-970. https://doi.org/10.1080/00223131.2018.1473171
  91. C.G. Wahl, W.R. Kaye, W. Wang, F. Zhang, J.M. Jaworski, A. King, Y.A. Boucher, Z. He, The Polaris-H imaging spectrometer, Nucl. Instrum. Methods A 784 (2015) 377-381. https://doi.org/10.1016/j.nima.2014.12.110
  92. G. Amoyal, V. Schoepff, F. Carrel, M. Michel, N. Blanc de Lanaute, J.C. Angelique, Development of a hybrid gamma camera based on Timepix3 for nuclear industry applications, Nucl. Instrum. Methods A 987 (2021) 164838. https://doi.org/10.1016/j.nima.2020.164838
  93. A. Omata, J. Kataoka, K. Fujieda, S. Sato, E. Kuriyama, H. Kato, A. Toyoshima, T. Teramoto, K. Ooe, Y. Liu, K. Matsunaga, T. Kamiya, T. Watabe, E. Shimosegawa, J. Hatazawa, Performance demonstration of a hybrid Compton camera with an active pinhole for wide-band X-ray and gamma-ray imaging, Sci. Rep. 10 (2020) 14064. https://doi.org/10.1038/s41598-020-71019-5
  94. D. Marr, T. Poggio, Cooperative computation of stereo disparity, Science 194 (1976) 283-287. https://doi.org/10.1126/science.968482
  95. J. Feener, W. Charlton, Preliminary results of nuclear fluorescence imaging of alpha and beta emitting sources, in: Proceedings of the 3rd International Conference on Advancements in Nuclear Instrumentation Measurement Methods and Their Applications (ANIMMA), France, 2013. Marseille.
  96. M. Ave, M. Bohacova, B. Buonomo, N. Busca, L. Cazon, S.D. Chemerisov, M.E. Conde, R.A. Crowell, P. Di Carlo, C. Di Giulio, M. Doubrava, A. Esposito, P. Facal, F.J. Franchini, J. Horandel, M. Hrabovsky, M. Iarlori, T.E. Kasprzyk, B. Keilhauer, H. Klages, M. Kleifges, S. Kuhlmann, G. Mazzitelli, L. Nozka, A. Obermeier, M. Palatka, S. Petrera, P. Privitera, J. Ridky, V. Rizi, G. Rodriguez, F. Salamida, P. Schovanek, H. Spinka, E. Strazzeri, A. Ulrich, Z.M. Yusof, V. Vacek, P. Valente, V. Verzi, T. Waldenmaier, Measurement of the pressure dependence of air fluorescence emission induced by electrons, Astropart. Phys. 28 (2007) 41-57. https://doi.org/10.1016/j.astropartphys.2007.04.006
  97. J. Sand, S. Ihantola, K. Perajarvi, H. Toivonen, J. Toivonen, Radioluminescence yield of alpha particles in air, New J. Phys. 16 (2014), 053022. https://doi.org/10.1088/1367-2630/16/5/053022
  98. C.I. Thompson, E.E. Barritt, C. Shenton-Taylor, Predicting the air fluorescence yield of radioactive sources, Radiat. Meas. 88 (2016) 48-54. https://doi.org/10.1016/j.radmeas.2016.02.013
  99. T. Kerst, J. Toivonen, Intense radioluminescence of NO/N2-mixture in solar blind spectral region, Opt Express 26 (2018) 33764-33771. https://doi.org/10.1364/oe.26.033764
  100. F. Arqueros, J.R. Horandel, B. Keilhauer, Air fluorescence relevant for cosmic-ray detection-summary of the 5th fluorescence workshop, El Escorial 2007, Nucl. Instrum. Methods A 597 (2008) 1-22. https://doi.org/10.1016/j.nima.2008.08.056
  101. J. Brett, K.E. Koehler, M. Bischak, M. Famiano, J. Jenkins, L. Klankowski, P. Niraula, P. Pancella, R. Lakis, Spectral measurements of alpha-induced radioluminescence in various gases, Nucl. Instrum. Methods A 184 (2017) 88-93.
  102. D. Chichester, S. Watson, Multispectral UV-visual imaging as a tool for locating and assessing ionizing radiation in air, IEEE Trans. Nucl. Sci. 58 (2011) 2512-2518. https://doi.org/10.1109/TNS.2011.2163825
  103. A.J. Crompton, K.A.A. Gamage, S. Bell, A.P. Wilson, A. Jenkins, D. Trivedi, First results of using a UVtron flame sensor to detect alpha-induced air fluorescence in the UVC wavelength range, Sensors 17 (2017) 2756. https://doi.org/10.3390/s17122756
  104. S. Ihantola, J. Sand, K. Perajarvi, J. Toivonen, H. Toivonen, Fluorescence-assisted gamma spectrometry for surface contamination analysis, IEEE Trans. Nucl. Sci. 60 (2013) 305-309. https://doi.org/10.1109/TNS.2013.2238249
  105. O. Ivanov, A. Danilovich, V. Stepanov, S. Smirnov, A. Volkovich, Visualization of radioactive rources without gamma-radiation with UV imaging systems, in: Proceedings of the ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management, 2009. Liverpool, UK.
  106. O.P. Ivanov, V.E. Stepanov, S.V. Smirnov, A.G. Volkovich, Development of method for detection of alpha contamination with using UV-camera "Day-Cor" by OFIL, IEEE Nucl. Sci. Symp. Conf. Rec. (2011) 2192-2194.
  107. T. Kerst, J. Sand, S. Ihantola, K. Perajarvi, A. Nicholl, E. Hrnecek, A. Toivonen, J. Toivonen, Standoff alpha radiation detection for hot cell imaging and crime scene investigation, Opt. Rev. 25 (2018) 429-436. https://doi.org/10.1007/s10043-018-0413-8
  108. F.S. Krasniqi, T. Kerst, M. Leino, J.-T. Eisheh, H. Toivonen, A. Rottger, J. Toivonen, Standoff UV-C imaging of alpha particle emitters, Nucl. Instrum. Methods A 987 (2021) 164821. https://doi.org/10.1016/j.nima.2020.164821
  109. N. Kume, K. Takakura, K. Nakayama, H. Kuroda, M. Izumi, N. Mukai, Remote detector of alpha-ray using ultraviolet ray emitted by nitrogen in air, in: IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), 2013. Seoul, South Korea.
  110. C. Mahe, Alpha imaging: recent achievements and glove box characterization, in: Proceedings of the Decommissioning, Decontamination, and Reutilization Topical Meeting, Idaho Falls, ID, USA, 2010.
  111. J. Sand, S. Ihantola, K. Perajarvi, A. Nicholl, E. Hrnecek, H. Toivonen, J. Toivonen, Imaging of alpha emitters in a field environment, Nucl. Instrum. Methods A 782 (2015) 13-19. https://doi.org/10.1016/j.nima.2015.01.087
  112. J. Sand, A. Nicholl, E. Hrnecek, H. Toivonen, J. Toivonen, K. Perajarvi, Stand-off radoluminescence mapping of alpha emitters under bright lighting, IEEE Trans. Nucl. Sci. 63 (2016) 1777-1783. https://doi.org/10.1109/TNS.2016.2562359
  113. J. Yao, J. Brenizer, R. Hui, S. Yin, Standoff alpha radiation detection via excited state absorption of air, Appl. Phys. Lett. 102 (2013) 254101. https://doi.org/10.1063/1.4812338
  114. P.E. Vanier, Analogies between Neutron and Gamma-Ray Imaging, Brookhaven National Laboratory, BNL-76974-2006-CP, 2006.
  115. P.E. Vanier, L. Forman, I. Dioszegi, C. Salwen, V.J. Ghosh, Calibration and testing of a large-area fast-neutron directional detector, IEEE Nucl. Sci. Symp. Conf. Rec. (2007) 179-184.
  116. J. Brennan, E. Brubaker, M. Gerling, P. Marleau, K. McMillan, A. Nowack, N. Renard-Le Galloudec, M. Sweany, Demonstration of two-dimensional time-encoded imaging of fast neutrons, Nucl. Instrum. Methods A 802 (2015) 76-81. https://doi.org/10.1016/j.nima.2015.08.076
  117. J.E.M. Goldsmith, M.D. Gerling, J.S. Brennan, A compact neutron scatter camera for field deployment, Rev. Sci. Instrum. 87 (2016), 083307. https://doi.org/10.1063/1.4961111
  118. C.V. Griffith, R.S. Woolf, B.F. Phlips, 64-element fast-neutron, coded-aperture imager, IEEE International Symposium on Technologies for Homeland Security (HST), Waltham, MA, USA, 2017.
  119. P.A. Hausladen, M.A. Blackston, R.J. Newby, Position-sensitive Fast-Neutron Detector Development in Support of Fuel-Cycle R&D MPACT Campaign, Oak Ridge National Laboratory, 2010. ORNL/TM-2010/201.
  120. P. Hausladen, J. Newby, F. Liang, M. Blackston, A Deployable Fast-Neutron Coded-Aperture Imager for Quantifying Nuclear Material, Oak Ridge National Laboratory, 2013. ORNL/TM-2013/248.
  121. P. Hausladen, J. Newby, F. Liang, M. Blackston, The Deployable Fast-Neutron Coded-Aperture Imager: Demonstration of Locating One or More Sources in Three Dimensions, Oak Ridge National Laboratory, 2013. ORNL/TM-2013/446.
  122. M.G. Makowska, B. Walfort, A. Zeller, C. Grunzweig, T. Bucherl, Performance of the commercial PP/ZnS:Cu and PP/ZnS:Ag scintillation screens for fast neutron imaging, J. Imaging 3 (2017) 60. https://doi.org/10.3390/jimaging3040060
  123. X. Pang, Z. Zhang, J. Zhang, W. Zhou, Y. Zhang, D. Cao, L. Shuai, Y. Wang, Y. Liu, X. Jiang, X. Liang, X. Xiao, L. Wei, D. Li, A compact MPPC-based camera for omnidirectional (4π) fast-neutron imaging based on double neutroneproton elastic scattering, Nucl. Instrum. Methods A 944 (2019) 162471. https://doi.org/10.1016/j.nima.2019.162471
  124. O.H.W. Siegmund, J.V. Vallerga, A.S. Tremsin, W.B. Feller, High spatial and temporal resolution neutron imaging with microchannel plate detectors, IEEE Trans. Nucl. Sci. 56 (2009) 1203-1209. https://doi.org/10.1109/TNS.2009.2015310
  125. Y. Tian, Y. Fu, Y. Li, Y. Li, Development of a 3-D Position Sensitive Neutron Detector Based on Organic Scintillators with Double Side SiPM Readout, in: IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC, Atlanta, GA, USA, 2017.
  126. K. Weinfurther, J. Mattingly, E. Brubaker, J. Steele, Model-based design evaluation of a compact, high-efficiency neutron scatter camera, Nucl. Instrum. Methods A 883 (2018) 115-135. https://doi.org/10.1016/j.nima.2017.11.025
  127. H. Al Hamrashdi, D. Cheneler, S.D. Monk, A fast and portable imager for neutron and gamma emitting radionuclides, Nucl. Instrum. Methods A 953 (2020) 163253. https://doi.org/10.1016/j.nima.2019.163253
  128. B. Ayaz-Maierhafer, J.P. Hayward, K.P. Ziock, M.A. Blackston, L. Fabris, Transmission and signal loss in mask designs for a dual neutron and gamma imager applied to mobile standoff detection, Nucl. Instrum. Methods A 712 (2013) 1-8. https://doi.org/10.1016/j.nima.2013.02.001
  129. B. Ayaz-Maierhafer, J.P. Hayward, K.P. Ziock, M.A. Blackston, Angular resolution study of a combined gamma-neutron coded aperture imager for standoff detection, Nucl. Instrum. Methods A 712 (2013) 120-125. https://doi.org/10.1016/j.nima.2013.02.005
  130. A. Poitrasson-Riviere, M.C. Hamel, J.K. Polack, M. Flaska, S.D. Clarke, S.A. Pozzi, Dual-particle imaging system based on simultaneous detection of photon and neutron collision events, Nucl. Instrum. Methods A 760 (2014) 40-45. https://doi.org/10.1016/j.nima.2014.05.056
  131. N.P. Shah, J. VanderZanden, D.K. Wehe, Design and construction of a 1-D, cylindrical, dual-particle, time-encoded imaging system, Nucl. Instrum. Methods A 954 (2020) 161785. https://doi.org/10.1016/j.nima.2019.01.012
  132. R.S. Woolf, B.F. Phlips, A.L. Hutcheson, L.J. Mitchell, E.A. Wulf, An Active Interrogation Detection System (ACTINIDES) Based on a Dual Fast Neutron/gamma-Ray Coded Aperture Imager, IEEE Conference on Technologies for Homeland Security (HST), Waltham, MA, USA, 2012.
  133. C. Lynde, F. Carrel, V. Schoepff, C. Frangville, R. Woo, A. Sardet, J. Venara, M. Ben Mosbah, R. Abou Khalil, Z. El Bitar, Demonstration of coded-aperture fast-neutron imaging based on Timepix detector, Nucl. Instrum. Methods A 954 (2020) 161373. https://doi.org/10.1016/j.nima.2018.10.051
  134. C.M. Whitney, L. Soundara-Pandian, E.B. Johnson, S. Vogel, B. Vinci, M. Squillante, J. Glodo, J.F. Christian, Gammaeneutron imaging system utilizing pulse shape discrimination with CLYC, Nucl. Instrum. Methods A 784 (2015) 346-351. https://doi.org/10.1016/j.nima.2014.09.022

Cited by

  1. Application and Development of Noncontact Detection Method of α-Particles Based on Radioluminescence vol.22, pp.1, 2021, https://doi.org/10.3390/s22010202