• Title/Summary/Keyword: Radioactive isotope

Search Result 124, Processing Time 0.026 seconds

Study in Occupational Exposure to Radiations and Radioactive Isotopes (방사선 및 방사성동위원소 근로자 피폭실태 연구)

  • Lee, Du-Yong;Kim, Kwang-Jin;Park, Hee-Chan
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.247-255
    • /
    • 2009
  • This study aims to provide basic data for establishing the safety and health plan by investigating the exposure conditions in the facilities registering business about handling radiations and radioactive isotopes in Korea. dose levels(working space, worker location) of the workers in 153 facilities were measured using surveymeter, and individual exposure concentration[(shallow dose(SD), depth dose(DD)] in 27 facilities using thermal luminescence dosimeter(TLD). In accordance with the measurement results by business type[fire fighting prevention business(FFPB, n=10), financial insurance business(FIB, n=3) and other facilities(n=140)] using surveymeter, those three business type groups showed difference (p<0.000). Dose levels of worker location for FFPB and FIB were significantly higher than 10.0 ${\mu}Sv$/hr, the allowable standard for radiations and radioactive isotopes, and they were higher 109.3 times(p<0.000) and 187.5 times(p<0.000) than those in other facilities. The concentration of TLD[FFPB(n=10), other facility (n=17)] in DD of FFPB was significantly higher than that in other facility(p=0.05). In accordance with the analysis result on relationship between surveymeter and TLD, the dose on working space and worker location(r=0.406, p<0.05), worker location dose and SD(r=0.453, p<0.05), worker location dose and DD(r=0.553, p<0.01), and SD and DD(r=0.927, p<0.001) had all related each other. It is urgently required to change FFPB and FIB from the facilities requiring registration for handling radiations and radioactive isotopes to the facilities that shall get permission for handling radiations and radioactive isotopes by reestablishing the legal administration area, for safety and health of radiation occupants.

Comparative Evaluation of Radioactive Isotope in Concrete by Heavy Ion Particle using Monte Carlo Simulation (몬테카를로 시뮬레이션을 통한 중하전입자의 콘크리트 방사화 비교평가)

  • Bae, Sang-Il;Cho, Yong-In;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.359-365
    • /
    • 2021
  • A heavy particle accelerator is a device that accelerates particles using high energy and is used in various fields such as medical and industrial fields as well as research. However, secondary neutrons and particle fragments are generated by the high-energy particle beam, and among them, the neutrons do not have an electric charge and directly interact with the nucleus to cause radiation of the material. Quantitative evaluation of the radioactive material produced in this way is necessary, but there are many difficulties in actual measurement during or after operation. Therefore, this study compared and evaluated the generated radioactive material in the concrete shield for protons and carbon ions of specific energy by using the simulation code FLUKA. For the evaluation of each energy of proton beam and carbon ion, the reliability of the source term was secured within 2% of the relative error with the data of the NASA Space Radiation Laboratory(NSRL), which is an internationally standardized data. In the evaluation, carbon ions exhibited higher neutron flux than protons. Afterwards, in the evaluation of radioactive materials under actual operating conditions for disposal, a large amount of short-lived beta-decay nuclides occurred immediately after the operation was terminated, and in the case of protons with a high beam speed, more radioactive products were generated than carbon ions. At this time, radionuclides of 44Sc, 3H and 22Na were observed at a high rate. In addition, as the cooling time elapsed, the ratio of long-lived nuclides increased. For nonparticulate radionuclides, 3H, 22Na, and for particulate radionuclides, 44Ti, 55Fe, 60Co, 152Eu, and 154Eu nuclides showed a high ratio. In this study, it is judged that it is possible to use the particle accelerator as basic data for facility maintenance, repair and dismantling through the prediction of radioactive materials in concrete according to the cooling time after operation and termination of operation.

Application of C-11 Gas Target Using Finite Element Method (FEM을 이용한 C-11 기체표적의 성능평가)

  • Hur M.G.;Oh H.S.;Jung H.Y.;Park S.P.;Yang S.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1699-1704
    • /
    • 2005
  • In this research the energy degrader, which is the most fragile part of the security of a target, has been newly designed to improve the performance of the gas target. Also, the numerical analysis of the heat movement and mechanical movement during the operation of the target has been accomplished. The heat analysis and structure analysis which are using the cooling water flow and pressure in the energy degrader and the Nastran mediocrity finite element analysis program, has been considered with the heat movement and mechanical movement according to the current capacity of proton beam which determines the production yield of the radioactive isotope. Also the possible use range has been determined, and at the same time the most suitable running condition according to the current capacity of proton beam has been suggested.

  • PDF

Ir-192 Brachytherapy Planning of Brain Tumor (Ir-192 방사성소선원에 의한 뇌종양의 치료계획)

  • Choi Tae Jin;Park Jeong Ho;Kim Ok Bae;Suh Soo Ji
    • Radiation Oncology Journal
    • /
    • v.6 no.2
    • /
    • pp.277-281
    • /
    • 1988
  • Although widely used in external beam treatment planning, computed tomography scans are infrequent in incranial tumors by implanting of Radioactive isotope. This incranial brachytherapy has only become possible by using CT scans and stereotaxic operation methods. The coincidence of single source and tumor axes in brachytherapy is very important to determine the therapeutic dosages. Eventhough using the CT scan, according to spatial location of tumor tying, the section of tumor will be seen enlargement, cause the tumor will be cut off with slight angle to its axes. Correct analysis of tumor size from source is required for rotated axes in analytical geometry.

  • PDF

Consideration and factors for developing new radiopharmaceuticals

  • Kim, Dong Wook
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.1
    • /
    • pp.46-52
    • /
    • 2020
  • Radiopharmaceuticals that can be consumed in specific disease site play a key role In order to diagnose and treat the diseases. In addition, radiopharmaceuticals can be used for diagnostic or therapeutic purposes depending on the type of the labeled radioactive isotope. Recently, theragnostic radiopharmaceuticals that can simultaneously diagnose and treat are developed. Therefore, the development of target-specific radiopharmaceuticals is a very important research topic in the field of molecular imaging and therapy. This review paper summarizes the basic considerations for the development of radiopharmaceuticals. For new researchers or students who are now beginning in the field of radiopharmaceuticals, we intend to assist in the development of radiopharmaceuticals by describing the definition of radiopharmaceuticals, the ideal radiopharmaceutical conditions, the considerations for developing new radiopharmaceuticals, the factors affecting the design of radiopharmaceuticals, the requirements of radioisotope labeling reactions, and finally the definition and importance of molar activity in radiopharmaceuticals.

Nuclear Design Methodology of Fission Moly Target for Research Reactor

  • Cho, Dong-Keun;Kim, Myung-Hyun;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.365-374
    • /
    • 1999
  • A nuclear design of fission moly production targets for a research reactor, HANARO was peformed. It was found that the use of MCNP-4A, ORIGEN-2 code was reliable for the analysis of production characteristics of $^{99}$ Mo in a target fuel at an irradiation holes. A parametric study was done for the optimization of target location, target dimension, target shape and fuel materials. It was shown that a fuel thickness was the most sensitive parameters and electro-deposited target gave the highest 99Mo yield ratio. A pellet target with vibro-compaction powder, however, showed the largest production capacity and better engineering feasibility even with less yield ratio. Ten kinds of optimized target design for both LEU and HEU satisfied all the given design constraints. The most favorable design was the HEU ring-shaped electro-deposited target, considered the safety limit, production yield, chemical process easiness, yield ratio, and amount of radioactive waste.

  • PDF

Ju vitro Effect of Cortisol on the Proliferation of Canine Peripheral Blood Mononuclear Cells (Jn vitro에서 cortisol이 개 말초혈액 단핵구세포의 증식에 미치는 영향)

  • 나기정;양만표
    • Journal of Veterinary Clinics
    • /
    • v.14 no.2
    • /
    • pp.230-234
    • /
    • 1997
  • In vitro effect of cortisol on the proliferation of canine peripheral blood mononuclear cells (MNC) was examined. The MNC was isolated from peripheral blood by a gradient centrifugation with Picoll-Hypaque. The cell proliferation assayed using a noneradioactive 5-Bromo-2'-deoxy-uridine (BrdU) kit. The MNC proliferated well in response to either phrtobeRagg$]$utinin-p (PHA-P) or culture supernatant from MNC stimulated with PHA-p. However, these proliferative responses of MNC were not affected by addition of coitisol of 1 to 1,OOfl ng/ml. The addition of cortisol in MNC culture with either PHA-P or corture supernatBnt from MNC stimulated with PHA-P far 4 days wag not also influenced on the viabilities of cultured MNC. In conclusions it was able to assay the cell proliferation with BrdU instead of radioactive isotope e.g. tritiated thymidine (3H-TdR). These results suggested that cortisol does not at least influence on MNC proliferation in vitro.

  • PDF

Measurement and Estimation for the Clearance of Radioactive Waste Contaminated with Radioisotopes for Medical Application (의료용 방사성폐기물 자체처분을 위한 방사능 측정 및 평가)

  • Kim, Changbum;Park, MinSeok;Kim, Gi-Sub;Jung, Haijo;Jang, Seongjoo
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.8-14
    • /
    • 2014
  • The amounts of radioactive wastes to be disposed in the medical institute have been increased due to development of radiation diagnosis and therapy rapidly. They are produced mostly by the very short lived radioisotopes such as $^{18}F$ used in PET/CT, $^{99m}Tc$, $^{123}I$, $^{125}I$ and $^{201}Tl$, etc. IAEA proposed a criteria for the clearance level of waste which depends on the individual ($10{\mu}Sv/y$) and collective dose (1 man-Sv/y), and concentration of each nuclide (IAEA Safety Series No 111-P-1.1, 1992 and IAEA RS-G-1.7, 2004). Radioactive wastes of $^{18}F$, $^{99m}Tc$, $^{123}I$, $^{125}I$ and $^{201}TI$ in the several types of container like Marinelli beaker, vial and plastic, were collected to measure the concentration of the waste of each nuclide in accordance with IAEA criteria. The measurement method and procedure of determining specific activity of the wastes using gamma emitters like MCA, gamma counter and beta emitters were developed. For the efficiency calibration of the detectors, CRM (certified reference material) which has the same dimension and shape was provided by Korea Research Institute of Standards and Science (KRISS). Correction factor of the radioactivity decay was calculated based on the measurement results, and the consideration of mutual relation with theoretical equation. The result of this study will be proposed as ISO standard.

A study on point defects induced with neutron irradiation in silicon wafer (중성자 조사에 의해 생성된 점결함 연구)

  • 김진현;류근걸
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.62-66
    • /
    • 2002
  • The conventional floating zone(FZ) crystal and Czochralski(CZ) silicon crystal have resistivity variations longitudinally as well as radially The resistivity variations of the conventional FZ and CZ crystal are not conformed to requirement of dopant distribution for power devices and thyristors. These resistivity variations in conventional cystals limits the reverse breakdown voltage that could be achieved and forced designers of high power diodes and thyristors to compromise the desired current-voltage characteristics. So to produce high Power diodes and thyristors, Neutron Transmutation Doping(NTD) technique is the one method just because NTD silicon provides very homogeneous distribution of doping concentration. This procedure involves the nuclear transmutation of silicon to phosphorus by bombardment of neutron to the crystal according to the reaction $^{30}$ Si(n,${\gamma}$)longrightarrow$^{31}$ Silongrightarrow(2.6 hr)$^{31}$ P+$\beta$$^{[-10]}$ . The radioactive isotope $^{31}$ Si is formed by $^{31}$ Si capturing a neutron, which then decays into the stable $^{31}$ P isotope (i.e., the donor atom), whose distribution is not dependent on the crystal growth parameters. In this research, neutron was irradiated on FZ silicon wafers which had high resistivity(1000~2000 Ω cm), for 26 and 8.3hours for samples of HTS-1 and HTS-2, and 13, 3.2, 2.0 hours for samples of IP-1, IP-2 and IP-3, respectively, to compare resistivity changes due to time differences. The designed resistivities were approached, which were 2.l Ωcm for HTS-1, 7.21 Ω cm for HTS-2, 1.792cm for IP-1, 6.83 Ωcm for IP-2, 9.23 Ωcm for IP-3, respectively. Point defects were investigated with Deep Level Transient Spectroscopy(DLTS). Four different defects were observed at 80K, 125K, 230K, and above 300K.

  • PDF

Contractile Activity of Goldfish Intestine Exposed to 18F Isotope (18F 동위원소 피폭에 의한 금붕어 장관 평활근의 수축활성)

  • Moon, Gyeong-Hee;Ok, Chi-Il;Cho, Seung-Il;Lee, Jong-Kyu;Kil, Sang-Hyeong;Seo, Won-Chan;Lee, Byung-Woo;Sohn, Hee-Young;Go, Hye-Jin;Park, Nam-Gyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.2
    • /
    • pp.89-93
    • /
    • 2008
  • Goldfish were exposed to radioactive isotope $^{18}F$, which is used for positron emission tomography (PET). $^{18}F$ is created when the oxygen in water combines with hydrogen on exposure to positrons accelerated by a cyclotron. The temporal change in intestine contractility was measured by physiograph after the exposure to $^{18}F$. The distance between the goldfish and 580 mCi of $^{18}F$ was approximately 4 cm and the exposure was for 4 hrs. The absorption level calculated from the distance, exposure time, and half-life of $^{18}F$ was approximately 2 Gy. The contractile activity of goldfish intestine was lowest on the first day and increased gradually to 100% of the control level by a period of between 5 and 36 days.