• Title/Summary/Keyword: Radio Frequency Signal

Search Result 702, Processing Time 0.026 seconds

Effect Analysis of Offshore Wind Farms on VHF band Communications (VHF 대역 통신에 대한 해상풍력 발전단지의 영향성 분석)

  • Oh, Seongwon;Park, Taeyong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.307-313
    • /
    • 2022
  • As the development of renewable energy expands internationally to cope with global warming and climate change, the share of wind power generation has been gradually increasing. Although wind farms can produce electric power for 24 h a day compared to solar power plants, Their interfere with the operation of nearby radars or communication equipment must be analyzed because large-scale wind power turbines are installed. This study analyzed whether a land radio station can receive sufficient signals when a ship sailing outside the offshore wind farm transmits distress signals on the VHF band. Based on the geographic information system digital map around the target area, wind turbine CAD model, and wind farm layout, the area of interest and wind farm were modeled to enable numerical analysis. Among the high frequency analysis techniques suitable for radio wave analysis in a wide area, a dedicated program applying physical optics (PO) and shooting and bouncing ray (SBR) techniques were used. Consequently, the land radio station could receive the electromagnetic field above the threshold of the VHF receiver when a ship outside the offshore wind farm transmitted a distress communication signal. When the line of sight between the ships and the land station are completely blocked, the strength of the received field decreases, but it is still above the threshold. Hence, although a wind farm is a huge complex, a land station can receive the electromagnetic field from the ship's VHF transmitter because the wave length of the VHF band is sufficiently long to have effects such as diffraction or reflection.

RFID Based Mobile Robot Docking Using Estimated DOA (방향 측정 RFID를 이용한 로봇 이동 시스템)

  • Kim, Myungsik;Kim, Kwangsoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.9
    • /
    • pp.802-810
    • /
    • 2012
  • This paper describes RFID(Radio Frequency Identification) based target acquisition and docking system. RFID is non-contact identification system, which can send relatively large amount of information using RF signal. Robot employing RFID reader can identify neighboring tag attached objects without any other sensing or supporting systems such as vision sensor. However, the current RFID does not provide spatial information of the identified object, the target docking problem remains in order to execute a task in a real environment. For the problem, the direction sensing RFID reader is developed using a dual-directional antenna. The dual-directional antenna is an antenna set, which is composed of perpendicularly positioned two identical directional antennas. By comparing the received signal strength in each antenna, the robot can know the DOA (Direction of Arrival) of transmitted RF signal. In practice, the DOA estimation poses a significant technical challenge, since the RF signal is easily distorted by the surrounded environmental conditions. Therefore, the robot loses its way to the target in an electromagnetically disturbed environment. For the problem, the g-filter based error correction algorithm is developed in this paper. The algorithm reduces the error using the difference of variances between current estimated and the previously filtered directions. The simulation and experiment results clearly demonstrate that the robot equipped with the developed system can successfully dock to a target tag in obstacles-cluttered environment.

Evaluation of Antenna Pattern Measurement of HF Radar using Drone (드론을 활용한 고주파 레이다의 안테나 패턴 측정(APM) 가능성 검토)

  • Dawoon Jung;Jae Yeob Kim;Kyu-Min Song
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.109-120
    • /
    • 2023
  • The High-Frequency Radar (HFR) is an equipment designed to measure real-time surface ocean currents in broad maritime areas.It emits radio waves at a specific frequency (HF) towards the sea surface and analyzes the backscattered waves to measure surface current vectors (Crombie, 1955; Barrick, 1972).The Seasonde HF Radar from Codar, utilized in this study, determines the speed and location of radial currents by analyzing the Bragg peak intensity of transmitted and received waves from an omnidirectional antenna and employing the Multiple Signal Classification (MUSIC) algorithm. The generated currents are initially considered ideal patterns without taking into account the characteristics of the observed electromagnetic wave propagation environment. To correct this, Antenna Pattern Measurement (APM) is performed, measuring the strength of signals at various positions received by the antenna and calculating the corrected measured vector to radial currents.The APM principle involves modifying the position and phase information of the currents based on the measured signal strength at each location. Typically, experiments are conducted by installing an antenna on a ship (Kim et al., 2022). However, using a ship introduces various environmental constraints, such as weather conditions and maritime situations. To reduce dependence on maritime conditions and enhance economic efficiency, this study explores the possibility of using unmanned aerial vehicles (drones) for APM. The research conducted APM experiments using a high-frequency radar installed at Dangsa Lighthouse in Dangsa-ri, Wando County, Jeollanam-do. The study compared and analyzed the results of APM experiments using ships and drones, utilizing the calculated radial currents and surface current fields obtained from each experiment.

Algorithm and experimental verification of underwater acoustic communication based on passive time reversal mirror in multiuser environment (다중송신채널 환경에서 수동형 시역전에 기반한 수중음향통신 알고리즘 및 실험적 검증)

  • Eom, Min-Jeong;Oh, Sehyun;Kim, J.S.;Kim, Sea-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.167-174
    • /
    • 2016
  • Underwater communication is difficult to increase the communication capacity because the carrier frequency is lower than that of radio communications on land. This is limited to the bandwidth of the signal under the influence of the characteristics of an ocean medium. As the high transmission speed and large transmission capacity have become necessary in the limited frequency range, the studies on MIMO (Multiple Input Multiple Output) communication have been actively carried out. The performance of the MIMO communication is lower than that of the SIMO (Single Input Multiple Output) communication because cross-talk occurs due to multiusers along with inter symbol interference resulting from the channel characteristics such as delay spread and doppler spread. Although the adaptive equalizer considering multi-channels is used to mitigate the influence of the cross-talk, the algorithm is normally complicated. In this paper, time reversal mirror technique with the characteristic of a self-equalization will be applied to simplify the compensation algorithm and relieve the cross-talk in order to improve the communication performance when the signal transmitted from two channels is received over interference on one channel in the same time. In addition, the performance of the MIMO communication based on the time reversal mirror is verified using data from the SAVEX15(Shallow-water Acoustic Variability Experiment 2015) conducted at the northern area of East China Sea in May 2015.

Development of Ubiquitous Sensor Network Intelligent Bridge System (유비쿼터스 센서 네트워크 기반 지능형 교량 시스템 개발)

  • Jo, Byung Wan;Park, Jung Hoon;Yoon, Kwang Won;Kim, Heoun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.120-130
    • /
    • 2012
  • As long span and complex bridges are constructed often recently, safety estimation became a big issue. Various types of measuring instruments are installed in case of long span bridge. New wireless technologies for long span bridges such as sending information through a gateway at the field or sending it through cables by signal processing the sensing data are applied these days. However, The case of occurred accidents related to bridge in the world have been reported that serious accidents occur due to lack of real-time proactive, intelligent action based on recognition accidents. To solve this problem in this study, the idea of "communication among things", which is the basic method of RFID/USN technology, is applied to the bridge monitoring system. A sensor node module for USN based intelligent bridge system in which sensor are utilized on the bridge and communicates interactively to prevent accidents when it captures the alert signals and urgent events, sends RF wireless signal to the nearest traffic signal to block the traffic and prevent massive accidents, is designed and tested by performing TinyOS based middleware design and sensor test free Space trans-receiving distance.

Three Dimensional Implementation of Intelligent Transportation System Radio Frequency Module Packages with Pad Area Array (PAA(Pad Area Array)을 이용한 ITS RF 모듈의 3차원적 패키지 구현)

  • Jee, Yong;Park, Sung-Joo;Kim, Dong-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.1
    • /
    • pp.13-22
    • /
    • 2001
  • This paper presents three dimensional structure of RF packages and the improvement effect of its electrical characteristics when implementing RF transceivers. We divided RF modules into several subunits following each subunit function based on the partitioning algorithm which suggests a method of three dimension stacking interconnection, PAA(pad area array) interconnection and stacking of three dimensional RF package structures. 224MHz ITS(Intelligent Transportation System) RF module subdivided into subunits of functional blocks of a receiver(RX), a transmitter(TX), a phase locked loop(PLL) and power(PWR) unit, simultaneously meeting the requirements of impedance characteristic and system stability. Each sub­functional unit has its own frequency region of 224MHz, 21.4MHz, and 450KHz~DC. The signal gain of receiver and transmitter unit showed 18.9㏈, 23.9㏈. PLL and PWR modules also provided stable phase locking, constant voltages which agree with design specifications and maximize their characteristics. The RF module of three dimension stacking structure showed $48cm^3$, 76.9% reduction in volume and 4.8cm, 28.4% in net length, 41.8$^{\circ}C$, 37% in maximum operating temperature, respectively. We have found that three dimensional PAA package structure is able to produce high speed, high density, low power characteristics and to improve its functional characteristics by subdividing RF modules according to the subunit function and the operating frequency, and the features of physical volume, electrical characteristics, and thermal conditions compared to two dimensional RF circuit modules.

  • PDF

Implementation of a Real-time Multipath Fading Channel Simulator Using a Hybrid DSP-FPGA Architecture (DSP-FPGA 구조를 갖는 다중경로 페이딩 채널 시뮬레이터 구현)

  • 이주현;이찬길
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.17-23
    • /
    • 2004
  • The mobile radio channel can be simulated as a complex-valued random process with narrow-band spectrum. This paper describes a real-time implementation of that process using a INS320C6414 digital signal processor and XC2VP30 Virtex FPGA. The simulator presented here is not only a comprehensive model of the flat fading but also frequency selective fading mobile channel conditions. To replicate the statistical characteristics of the multipath fading environment with the minimum computational burden, multi-rate techniques are employed to resolve practical problems such as variable sampling rate. The simulator produces accurate and consistent results due to digital implementation. It is very flexible and simple to program for various field conditions in mobile communications with a graphical user interface.

Implementation of NTSC TV Transmitter Module (NTSC TV Transmitter Module의 구현)

  • Kim Kwang-Tae;Sim Myoung-Su
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.2 s.308
    • /
    • pp.28-32
    • /
    • 2006
  • In this paper, NTSC TV Transmitter Modulo will be designed and produced which make possible playing the motion picture not only on TV but also on portable TV. NTSC TV Transmitter Module modulates signals that received Video and Audio signals from a mobile on NTSC TV CH4 mechanism. so it has an advantage of convenience that watching the motion picture of mobile on TV without any other cable through transmitting signals by wireless. But it has some demerits of long size antenna and noise sensitiveness. In the future, if some problems like a size of antenna distortion of signal and noise can be solved through continuous researching about Radio Frequency part, it is possible to play mobile motion pictures on the more media like a camcorder, DVD player and so on.

Interference Analysis of Wireless Systems with Arbitrary Antenna Patterns and Geographic Information in the VHF/UHF Bands (VHF/UHF 대역에서 지리정보와 임의 안테나 패턴을 갖는 무선시스템의 간섭분석 연구)

  • Suh, Kyoung-Whoan
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.445-454
    • /
    • 2013
  • By using the radio propagation prediction of Rec. ITU-R P.1546, geographic information system, and S-I plane, we presented the methodology of interference analysis based on the minimum coupling loss, and also suggested the local coordinate system for calculating azimuth and elevation angles between the victim receiver and the interferer for an arbitrary antenna pattern. To check the presented algorithm, the map with the land-sea mixed area was taken for the given area of $80{\times}60[km^2]$ as real geography information. Field strength, path profile, and protection ratio with maximum allowable interference level have been illustrated for radar and fixed wireless system for the assumed frequency. In addition interference power of the victim receiver was calculated asa function of azimuth and elevation angles of the interferer. The developed methodology of interference analysis in the VHF and UHF bands can be actually applied to assess interoperability as well as compatibility in the civil or military applications.

Design and Implementation of a Reconfigurable Communication Terminal Platform (재구성 가능한 통신 단말 플랫폼의 설계 및 구현)

  • Lee, Kyoung-Hak;Ko, Hyung-Hwa
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.1
    • /
    • pp.66-73
    • /
    • 2007
  • SDR technology is a fundamental wireless access technology that combines and accommodates multiple wireless communication standards in one transceiver system through just modifying software using modular communication platforms without any hardware modifications for RF and IF signal processing on the basis of high performance DSP devices. Various communication systems that are designed under diverse and complex network environments require the communication platforms on the basis of SDR supporting reorganization to guarantee simple and fast communication interfaces among the respective wireless networks. This paper introduces a main idea on the implementation of platform on the basis of SDR and a communication platform is designed for experiments that is composed of a DSP board with TMS320C6713 CPU, a FPGA board processing IF signals, and a module with RF transceiver processing wireless LAN frequency bandwidth. Various modulation schemes(BPSK, QPSK, and 16QAM) used in communication systems are applied and tested on the designed platform and the test results shows that it is possible to design a reconfigurable communication terminal platform.

  • PDF