DOI QR코드

DOI QR Code

Evaluation of Antenna Pattern Measurement of HF Radar using Drone

드론을 활용한 고주파 레이다의 안테나 패턴 측정(APM) 가능성 검토

  • Dawoon Jung (Ocean Circulation & Climate Research Department, Korea Institute of Ocean Science and Technology) ;
  • Jae Yeob Kim (Ocean Circulation & Climate Research Department, Korea Institute of Ocean Science and Technology) ;
  • Kyu-Min Song (Ocean Circulation & Climate Research Department, Korea Institute of Ocean Science and Technology)
  • 정다운 (한국해양과학기술원 해양순환기후연구부) ;
  • 김재엽 (한국해양과학기술원 해양순환기후연구부) ;
  • 송규민 (한국해양과학기술원 해양순환기후연구부)
  • Received : 2023.11.17
  • Accepted : 2023.12.10
  • Published : 2023.12.31

Abstract

The High-Frequency Radar (HFR) is an equipment designed to measure real-time surface ocean currents in broad maritime areas.It emits radio waves at a specific frequency (HF) towards the sea surface and analyzes the backscattered waves to measure surface current vectors (Crombie, 1955; Barrick, 1972).The Seasonde HF Radar from Codar, utilized in this study, determines the speed and location of radial currents by analyzing the Bragg peak intensity of transmitted and received waves from an omnidirectional antenna and employing the Multiple Signal Classification (MUSIC) algorithm. The generated currents are initially considered ideal patterns without taking into account the characteristics of the observed electromagnetic wave propagation environment. To correct this, Antenna Pattern Measurement (APM) is performed, measuring the strength of signals at various positions received by the antenna and calculating the corrected measured vector to radial currents.The APM principle involves modifying the position and phase information of the currents based on the measured signal strength at each location. Typically, experiments are conducted by installing an antenna on a ship (Kim et al., 2022). However, using a ship introduces various environmental constraints, such as weather conditions and maritime situations. To reduce dependence on maritime conditions and enhance economic efficiency, this study explores the possibility of using unmanned aerial vehicles (drones) for APM. The research conducted APM experiments using a high-frequency radar installed at Dangsa Lighthouse in Dangsa-ri, Wando County, Jeollanam-do. The study compared and analyzed the results of APM experiments using ships and drones, utilizing the calculated radial currents and surface current fields obtained from each experiment.

광해역의 표층 해수유동을 준 실시간으로 측정하는 장비인 해양 고주파 레이다(High Frequency Radar, HFR)는 특정 전파대역(HF)의 주파수를 해수면으로 발사하고 후방으로 산란된 전파를 분석하여 표층 유속 벡터를 측정한다(Crombie, 1955; Barrick, 1972). 본 연구에서 사용되는 Codar사의 Seasonde HF radar의 경우, 무지향성 안테나에서 송·수신한 전파의 브래그 피크(Bragg peak)의 강도와 다중신호분류(Mutiple Signal Classification, MUSIC) 알고리즘을 통하여 방사형 해류(Radial Vector)의 속도와 위치를 결정하게 된다. 이때 생산된 해류는 관측 전파 수신 환경의 특성이 고려되지 않은 이상적인 전파환경(Ideal Pattern)이 적용된 자료로써 이를 보정하기 위하여 안테나 패턴 측정(Antenna Pattern Measurement, APM)을 시행하여 보정된 방사해류장(Measured Radial Vector)을 계산하게 된다. APM의 관측원리는 안테나로부터 수신되는 각 위치별 신호 강도값을 측정하여 해류의 위치 및 위상 정보를 수정하는 것으로 일반적으로 선박에 안테나를 설치하여 실험을 진행한다. 하지만 선박을 활용할 시, 기상조건과 해양 상황 등 다양한 환경에 의해 최적의 APM 결과를 산출하기까지 많은 제약이 따른다. 따라서 APM 실험에 대하여 해상 상황에 대한 의존도를 낮추고 경제적인 효율성을 높이기 위하여 무인항공기인 드론을 이용한 APM 활용 가능성을 검토하였다. 본 연구에서는 전남 완도군 당사리 당사도등대에 설치된 고주파레이다를 활용하여 선박을 활용한 APM 실험과 드론을 활용한 APM 실험을 진행하였으며 선박과 드론으로 관측된 결과가 적용된 방사형 해류와 계류된 고정부이를 활용하여 그 결과를 비교 분석하였다.

Keywords

Acknowledgement

이 논문은 2023년 한국해양과학기술원의 기관목적사업(한반도 주변해 해양환경/생태계 변동특성 분석 및 진단 역량 강화)과 2023년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(20210607, 관할해역 첨단 해양과학기지 구축 및 융합연구). 드론 및 드론 APM용 장비 대여에 협조해주신 (주)요타오션에 감사드립니다.

References

  1. Emery, B.M. (2019). Evaluation of alternative direction-of-arrival methods for oceanographic HF radars. IEEE Journal of Oceanic Engineering, 45(3), 990-1003. https://doi.org/10.1109/JOE.2019.2914537
  2. Emery, B. and Washburn, L. (2019). Uncertainty estimates for Sea- Sonde HF radar ocean current observations. Journal of Atmospheric and Oceanic Technology, 36(2), 231-247. https://doi.org/10.1175/JTECH-D-18-0104.1
  3. Evans, C.W., Roarty, H.J., Handel, E.M. and Glenn, S.M. (2015). Evaluation of three antenna pattern measurements for a 25 MHz seasonde. In 2015 IEEE/OES Eleveth Current, Waves and Turbulence Measurement (CWTM), 1-5.
  4. Fernandez, D.M., Vesecky, J. and Teague, C. (2003). Calibration of HF radar systems with ships of opportunity. 2003 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Toulouse, France, 7, 4271-4273.
  5. Kim, J.Y., Jung, D., Lee, S. and Song, K.M. (2022). The effect of antenna pattern measurement according to radio wave environment on data quality of HF ocean radar. Ocean and Polar Research, 44(4), 287-296 (in Korean).
  6. Kohut, J.T. and Glenn, S.M. (2003). Improving HF radar surface current measurements with measured antenna beam patterns. Journal of Atmospheric and Oceanic Technology, 20(9), 1303-1316. https://doi.org/10.1175/1520-0426(2003)020<1303:IHRSCM>2.0.CO;2
  7. Lai, Y., Zhou, H., Zeng, Y. and Wen, B. (2017). Quantifying and reducing the DOA estimation error resulting from antenna pattern deviation for direction-finding HF radar. Remote Sensing, 9(12), 1285.
  8. Laws, K., Paduan, J.D. and Vesecky, J. (2010). Estimation and assessment of errors related to antenna pattern distortion in CODAR SeaSonde high-frequency radar ocean current measurements. Journal of Atmospheric and Oceanic Technology, 27(6), 1029-1043. https://doi.org/10.1175/2009JTECHO658.1
  9. Lu, B., Wen, B., Tian, Y. and Wang, R. (2017). Analysis and calibration of crossed-loop antenna for vessel DOA estimation in HF radar. IEEE Antennas and Wireless Propagation Letters, 17(1), 42-45. https://doi.org/10.1109/LAWP.2017.2772835
  10. Teresa Updyke Old Dominion University (2020). Antenna Pattern Measurement Guide.
  11. Washburn, L., Romero, E., Johnson, C. Emery, B. and Gotschalk, C. (2017). Measurement of antenna patterns for oceanographic radars using aerial drones. Journal of Atmospheric and Oceanic Technology, 34(5), 971-981. https://doi.org/10.1175/JTECH-D-16-0180.1
  12. Yang, S., Ke, H., Wu, X., Tian, J. and Hou, J. (2005). HF radar ocean current algorithm based on MUSIC and the validation experiments. IEEE Journal of Oceanic Engineering, 30(3), 601-618. https://doi.org/10.1109/JOE.2005.858370