• Title/Summary/Keyword: Radical species

Search Result 1,068, Processing Time 0.026 seconds

Effect of gomchwi (Ligularia fischeri) extract against high glucose- and H2O2-induced oxidative stress in PC12 cells (PC12 신경세포에서 고당 및 과산화수소로 유도된 산화적 스트레스에 대한 곰취 추출물의 효과)

  • Park, Sang Hyun;Park, Seon Kyeong;Ha, Jeong Su;Lee, Du Sang;Kang, Jin Yong;Kim, Jong Min;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.508-514
    • /
    • 2016
  • Effects of the ethyl acetate fraction from gomchwi (Ligularia fischeri) extract against high $glucose/H_2O_2-induced$ oxidative stress and in vitro neurodegeneration were investigated to confirm the physiological property of the extract. The ethyl acetate fraction of gomchwi extract showed the highest total phenolic contents than the other solvent fractions. An anti-hyperglycemic activity of the ethyl acetate fraction was evaluated using the ${\alpha}-glucosidase$ inhibitory assay, and the half maximal inhibitory concentration ($IC_{50}$) value for ${\alpha}-glucosidase$ was found to be $727.64{\mu}g/mL$. In addition, the ethyl acetate fraction showed excellent 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt radical scavenging activity, and inhibition of malondialdehyde production. The ethyl acetate fraction also decreased intracellular reactive oxygen species, whereas neuronal cell viability against high glucose/$H_2O_2$-induced cytotoxicity was found to be increased. Finally, 3,5-dicaffeoylquinic acid as a main phenolic compound in the ethyl acetate fraction was analyzed by high-performance liquid chromatography. These results suggest that gomchwi might be a good natural source of functional materials to prevent diabetic neurodegeneration.

Ameliorating effect of the ethyl acetate fraction of Pteridium aquilinum on glucose-induced neuronal apoptosis (포도당으로 유도된 신경세포 손상에 대한 고사리 아세트산에틸 분획물의 개선 효과)

  • Park, Seon Kyeong;Guo, Tian Jiao;Kim, Jong Min;Kang, Jin Yong;Park, Sang Hyun;Kang, Jeong Eun;Kwon, Bong Seok;Lee, Chang Jun;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.430-437
    • /
    • 2017
  • The protective effect of Pteridium aquilinum on high glucose-induced cytotoxicity was examined in vitro to investigate the relationship between diabetic condition and neuronal dysfunction. The ethyl acetate fraction of P. aquilinum (EFPA), with total phenolic content of 265.08 mg gallic acid equivalent/g, showed higher 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)/2,2-diphenyl-1-picrylhydrazyl radical scavenging activities and lipid peroxidation inhibitory effect than any other fraction. In addition, EFPA showed a significant reduction in the inhibitory effect on ${\alpha}$-glucosidase activity ($IC_{50}$ value=$205.26{\mu}g/mL$) compared to the acarbose positive control. The anti-oxidative effect in PC12 cells, protective effects on high glucose-induced oxidative stress in neuronal cells, and neurotoxicity were measured using 2',7'-dichlorofluorescin diacetate, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide, and lactate dehydrogenase assays, respectively. EFPA showed conspicuous inhibitory effect on cellular reactive oxygen species production and neuronal cell apoptosis. Finally, kaempferol-3-glucoside was identified as the main phenolic compound of EFPA using high performance liquid chromatography.

Protective effect of Eucommia ulmoides oliver leaves against PM2.5-induced oxidative stress in neuronal cells in vitro (미세먼지(PM2.5)로 유도된 산화적 스트레스에 대한 두충(Eucommia ulmoides Oliver) 잎의 in vitro 뇌 신경세포 보호 효과)

  • Kim, Min Ji;Kang, Jin Yong;Park, Seon Kyeong;Kim, Jong Min;Moon, Jong Hyun;Kim, Gil Han;Lee, Hyo Lim;Jeong, Hye Rin;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.423-433
    • /
    • 2021
  • This study was performed to examine the neuroprotective effect of the ethyl acetate fraction from Eucommia ulmoides oliver leaf (EFEL) on PM2.5-induced cytotoxicity. EFEL had higher total phenolic and flavonoid contents than the other fractions. In ABTS and DPPH radical scavenging activities, the IC50 of EFEL was measured as 212.80 and 359.13 ㎍/mL, respectively. To investigate the neuroprotective effect of EFEL, MTT and DCF-DA assays were performed on HT22, MC-IXC, and BV-2 cells. EFEL effectively decreased PM2.5-induced intercellular reactive oxygen species (ROS) content and inhibited PM2.5-induced cell death. In the results of protein expression related to cellular cytotoxicity on microglial cells (BV-2), EFEL had an improvement effect on cell apoptosis and inflammatory pathways. Rutin and chlorogenic acid were identified as the main physiological compounds. Moreover, it was expected that EFEL, including rutin and chlorogenic acid, could be functional food substances with neuroprotective effects against PM2.5-induced oxidative stress.

Anti-oxidative and Anti-cancer Activities of Ethanol Extract of Litsea populifolia (인체 폐암 세포주 A549에서 Litsea populifolia 추출물의 항산화 및 항암활성 분석)

  • Jin, Soojung;Oh, You Na;Jeong, Hyun Young;Yun, Hee Jung;Park, Jung-ha;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.679-687
    • /
    • 2019
  • Litsea populifolia, a plant species of the Lauraceae family, is widely distributed in the tropical and subtropical areas of Asia. The phylogenetic relationships and botanical characteristics of L. populifolia have been reported; however, its anti-oxidative and anti-cancer activities remain unclear. In this study, we evaluated the anti-oxidative and anti-cancer effects of ethanol extracts of L. populifolia (EELP) together with the molecular mechanism of its anti-cancer activity in human lung adenocarcinoma A549 cells. EELP showed significant anti-oxidative effects with a 50% inhibitory concentration at $11.71{\mu}g/ml$, which was measured by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. EELP exhibited cytotoxic activity and induced cell cycle arrest at the G1 phase in A549 cells in a dose-dependent manner, whereas EELP did not have the cytotoxic effect on the normal human lung cell line IMR90. Treatment with EELP also resulted in a decreased expression of G1/S transition-related molecules-including cyclin-dependent kinase (CDK) 2, CDK6, cyclin D1, and cyclin E-both for the transcription and translation levels. EELP-induced G1 arrest was associated with the phosphorylation of checkpoint kinase 2 (CHK2), p53, cell division cycle 25 homolog A (CDC25A), and the reduction of CDC25A expression in A549 cells. Collectively, these results suggest that EELP may exert an anti-cancer effect by cell cycle arrest at the G1 phase through both p53-dependent and p53-independent (ATM/CHK2/CDC25A/CDK2) pathways in A549 cells.

Antioxidant, Antimicrobial and Cellular Protective Effects of Lycopus lucidus Extract and Fraction (택란 추출물 및 분획물의 항산화, 항균 및 세포 보호 효과)

  • Lee, Jin Kyoung;Park, Young Min;Lee, Sang Lae;Song, Ba Reum;Lee, Yun Ju;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.114-121
    • /
    • 2019
  • In this study, antioxidative, antibacterial and cytoprotective effects of the ethanol extract and ethylacetate fraction of Lycopus lucidus (L. lucidus) were compared and analyzed. Free radical scavenging activities ($FSC_{50}$) of the L. lucidus extract and fraction were found to be 65.1 and $64.9{\mu}g/mL$ respectively. In the $Fe^{3+}-EDTA/H_2O_2$ system, the reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) for the extract and fraction were 6.6 and $6.3{\mu}g/mL$, respectively which showed excellent total antioxidant abilities. The extract showed antibacterial activity against S. aureus, while the fraction showed in all the bacteria except for A. niger. The cytoprotective effect of L. lucidus extract was compared to that of the fraction and the effect against $^1O_2$-induced cellular damage of human erythrocytes (${\tau}_{50}$) was 51.3 and 73.7 min at $50{\mu}g/mL$, respectively. For the cytoprotective effect of keratinocytes damaged by $H_2O_2$ and UVB, the extracts did not show any efficacy but showed efficacy at $1-2{\mu}g/mL$, respectively. The fraction increased the cell viability up to 85.8 and 81.9%, respectively. As a result of intracellular ROS scavenging activity, the scavenging activity was observed at $1-2{\mu}g/mL$ of the fraction. From the results comparing the physiological activities of L. lucidus extract and the fraction, the ethylacetate fraction of L. lucidus has antioxidative effect similar to that of the extract whereas superior antimicrobial and cytoprotective effects than that of the extract. Overall, the ethylacetate fraction of L. lucidus protects cells from an external stress which can be used as a potential cosmetic material.

Protective effect of matcha green tea (Camellia sinensis) extract on high glucose- and oleic acid-induced hepatic inflammatory effect (고당 및 올레산으로 유도된 간세포에서의 염증반응에 대한 말차(Camellia sinensis) 추출물의 보호효과)

  • Kim, Jong Min;Lee, Uk;Kang, Jin Yong;Park, Seon Kyeong;Shin, Eun Jin;Moon, Jong Hyun;Kim, Min Ji;Lee, Hyo Lim;Kim, Gil Han;Jeong, Hye Rin;Park, Hyo Won;Kim, Jong Cheol;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.267-277
    • /
    • 2021
  • To evaluate hepatoprotective effects, the antioxidant capacities of matcha green tea extract (Camellia sinenesis) were compared to those of green leaf tea and the anti-inflammatory activities in HepG2 cells were investigated. Evaluation of the total phenolic and total flavonoid content, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, and inhibitory effect on lipid peroxidation indicated that the aqueous extract of matcha green tea presented significant catechin content and antioxidant capacity compared to those of green leaf tea. In addition, the extract had considerable inhibitory effects on α-glucosidase, α-amylase, and advanced glycation end-products. The matcha green tea extract significantly increased cell viability and reduced reactive oxygen species in H2O2- and high-glucose-treated HepG2 cells. Furthermore, in response to oleic acid-induced HepG2 cell injury, treatment with matcha green tea aqueous extract inhibited lipid accumulation and regulated the expression of inflammatory proteins such as p-JNK, p-Akt, p-GSK-3β, caspase-3, COX-2, iNOS, and TNF-α. Matcha green tea could be used as a functional material to ameliorate hepatic lipid accumulation and inflammation.

The protective effect of Eucommia ulmoides leaves on high glucose-induced oxidative stress in HT-29 intestinal epithelial cells (고당으로 유도된 산화적 스트레스에 대한 두충 잎 추출물의 장 상피 세포 보호 효과)

  • Han Su Lee;Jong Min Kim;Hyo Lim Lee;Min Ji Go;Ju Hui Kim;Hyun Ji Eo;Chul-Woo Kim;Ho Jin Heo
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.183-196
    • /
    • 2024
  • This study investigated the protective effect of the aqueous extract of Eucommia ulmoides leaves (AEEL) against high glucose-induced human colon epithelial HT-29 cells. The 2,2'-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazy (DPPH) radical scavenging activities, ferric reducing/antioxidant power (FRAP), and malondialdehyde (MDA) analyses indicated that AEEL had significant antioxidant activities. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that AEEL increased cell viability against high glucose-, H2O2-, and lipopolysaccharide (LPS)-induced cytotoxicity in HT-29 cells. Also, the 2'-7'-dichlorodihydrofluorescein diacetate (DCF-DA) assay indicated that AEEL decreased intracellular reactive oxygen species (ROS) against high glucose-, H2O2-, and lipopolysaccharide (LPS)-induced cytotoxicity in HT-29 cells. AEEL showed inhibitory activities against α-glucosidase and inhibited the formation of advanced glycation end products (AGEs). AEEL showed significant positive effects on the viability and titratable acidity of L. brevis. The high-performance liquid chromatogram (HPLC) analysis identified chlorogenic acid and rutin as the major compounds of AEEL. These results suggested that AEEL has the potential to be used as a functional food source to suppress blood glucose levels and protect the gut from high glucose-induced oxidative stress.

Plasma Activity of Lysosomal Enzymes in Active Pulmonary Tuberculosis (활동성 폐결핵 환자에서 혈중 리소솜 효소의 활성도)

  • Koh, Youn-Suck;Choi, Jeong-Eun;Kim, Mi-Kyung;Lim, Chae-Man;Kim, Woo-Sung;Chi, Hyun-Sook;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.5
    • /
    • pp.646-653
    • /
    • 1995
  • Background: The confirmative diagnosis of pulmonary tuberculosis(Tb) can be made by the isolation of Mycobacterium Tuberculosis(MTb) in the culture of the sputum, respiratory secretions or tissues of the patients, but positive result could not always be obtained in pulmonary Tb cases. Although there are many indirect ways of the diagnosis of Tb, clinicians still experience the difficulty in the diagnosis of Tb because each method has its own limitation. Therefore development of a new diagnostic tool is clinically urgent. It was reported that silica cause some lysosomal enzymes to be released from macrophages in vitro and one of these enzymes is elevated in workers exposed to silica dust and in silicotic subjects. In pulmonary Tb, alveolar macrophages are known to be activated after ingestion of MTb. Activated macrophages can kill MTb through oxygen free radical species and digestive enzymes of lysosome. But if macrophages allow the bacilli to grow intracellularly, the macrophages will die finally and local lesion will enlarge. Then it is assumed that the lysosomal enzymes would be released from the dead macrophages. The goal of this investigation was to determine if there are differences in the plasma activities of lysosomal enzymes, ($\beta$-glucuronidase(GLU) and $\beta$-N-acetyl glucosaminidase(NAG), among the groups of active and inactive pulmonary Tb and healthy control, and to see if there is any possibility that the plasma activity of GLU and NAG can be used as diagnostic indicies of active pulmonary Tb. Methods: The plasma were obtained from 20 patients with bacteriologically proven active pulmonary Tb, 15 persons with inactive Tb and 20 normal controls. In 10 patients with active pulmonary Tb, serial samples after 2 months of anti-Tb medications were obtained. Plasma GLU and NAG activities were measured by the fluorometric methods using 4-methylumbelliferyl substrates. All data are expressed as the mean $\pm$ the standard error of the mean. Results: The activites of GLU and NAG in plasma of the patients with active Tb were $21.52{\pm}3.01$ and $325.4{\pm}23.37$(nmol product/h/ml of plasma), respectively. Those of inactive pulmonary Tb were $24.87{\pm}3.78$, $362.36{\pm}33.92$ and those of healthy control were $25.45{\pm}4.05$, $324.44{\pm}28.66$(nmol product/h/ml of plasma), respectively. There were no significant differences in the plasma activities of both enzymes among 3 groups. The plasma activities of GLU at 2 months after anti-Tb medications were increased($42.18{\pm}5.94$ nmol product/h/ml of plasma) in the patients with active pulmonary Tb compared with that at the diagnosis of Tb(P-value <0.05). Conclusion: The results of the present investigation suggest that the measurement of the plasma activities of GLU and NAG in the patients with active pulmonary Tb could not be a useful method for the diagnosis of active Tb. Further investigation is necessary to define the reasons why the plasma activities of the GLU was increased in the patients with active pulmonary Tb after Tb therapy.

  • PDF