Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.6.679

Anti-oxidative and Anti-cancer Activities of Ethanol Extract of Litsea populifolia  

Jin, Soojung (Blue-Bio Industry Regional Innovation Center, Dong-eui University)
Oh, You Na (Blue-Bio Industry Regional Innovation Center, Dong-eui University)
Jeong, Hyun Young (Blue-Bio Industry Regional Innovation Center, Dong-eui University)
Yun, Hee Jung (Division of Applied Bioengineering, College of Engineering, Dong-eui University)
Park, Jung-ha (Division of Applied Bioengineering, College of Engineering, Dong-eui University)
Kwon, Hyun Ju (Blue-Bio Industry Regional Innovation Center, Dong-eui University)
Kim, Byung Woo (Blue-Bio Industry Regional Innovation Center, Dong-eui University)
Publication Information
Journal of Life Science / v.29, no.6, 2019 , pp. 679-687 More about this Journal
Abstract
Litsea populifolia, a plant species of the Lauraceae family, is widely distributed in the tropical and subtropical areas of Asia. The phylogenetic relationships and botanical characteristics of L. populifolia have been reported; however, its anti-oxidative and anti-cancer activities remain unclear. In this study, we evaluated the anti-oxidative and anti-cancer effects of ethanol extracts of L. populifolia (EELP) together with the molecular mechanism of its anti-cancer activity in human lung adenocarcinoma A549 cells. EELP showed significant anti-oxidative effects with a 50% inhibitory concentration at $11.71{\mu}g/ml$, which was measured by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. EELP exhibited cytotoxic activity and induced cell cycle arrest at the G1 phase in A549 cells in a dose-dependent manner, whereas EELP did not have the cytotoxic effect on the normal human lung cell line IMR90. Treatment with EELP also resulted in a decreased expression of G1/S transition-related molecules-including cyclin-dependent kinase (CDK) 2, CDK6, cyclin D1, and cyclin E-both for the transcription and translation levels. EELP-induced G1 arrest was associated with the phosphorylation of checkpoint kinase 2 (CHK2), p53, cell division cycle 25 homolog A (CDC25A), and the reduction of CDC25A expression in A549 cells. Collectively, these results suggest that EELP may exert an anti-cancer effect by cell cycle arrest at the G1 phase through both p53-dependent and p53-independent (ATM/CHK2/CDC25A/CDK2) pathways in A549 cells.
Keywords
A549 cells; anti-cancer; anti-oxidative; G1 arrest; Litsea populifolia;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wu, W., Fan, Y. H., Kemp, B. L., Walsh, G. and Mao, L. 1998. Overexpression of cdc25A and cdc25B is frequent in primary non-small cell lung cancer but is not associated with overexpression of c-myc. Cancer Res. 58, 4082-4085.
2 Xu, X., Yamamoto, H., Liu, G., Ito, Y., Ngan, C. Y., Kondo, M., Nagano, H., Dono, K., Sekimoto, M. and Monden, M. 2008. CDC25A inhibition suppresses the growth and invasion of human hepatocellular carcinoma cells. Int. J. Mol. Med. 21, 145-152.
3 Xu, X., Yamamoto, H., Sakon, M., Yasui, M., Ngan, C. Y., Fukunaga, H., Morita, T., Ogawa, M., Nagano, H., Nakamori, S., Sekimoto, M., Matsuura, N. and Monden, M. 2003. Overexpression of CDC25A phosphatase is associated with hypergrowth activity and poor prognosis of human hepatocellular carcinomas. Clin. Cancer Res. 9, 1764-1772.
4 Zhou, B. B. and Elledge, S. J. 2000. The DNA damage response: putting checkpoints in perspective. Nature 408, 433-439.   DOI
5 Bertero, T., Gastaldi, C., Bourget-Ponzio, I., Mari, B., Meneguzzi, G., Barbry, P., Ponzio, G. and Rezzonico, R. 2013. Cdc25A targeting by miR-483-3p decreases CCND-CDK4/6 assembly and contributes to cell cycle arrest. Cell Death Differ. 20, 800-811.   DOI
6 Al-Rimawi, F., Rishmawi, S., Arigat, S. H., Khalid, M. F., Warad, I. and Salah, Z. 2016. Anticancer activity, antioxidant activity, and phenolic and flavonoids content of wild Tragopogon porrifolius plant extracts. Evid. Based Complement. Alternat. Med. 2016, 9612490.
7 Bartek, J. and Lukas, J. 2001. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett. 490, 117-122.   DOI
8 Bernardi, R., Liebermann, D. A. and Hoffman, B. 2000. Cdc25A stability is controlled by the ubiquitin-proteasome pathway during cell cycle progression and terminal differentiation. Oncogene 19, 2447-2454.   DOI
9 Biomberg, I. and Hoffmann, I. 1999. Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol. Cell Biol. 19, 6183-6194.   DOI
10 Cai, Z., Chehab, N. H. and Pavletich, N. P. 2009. Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase. Mol. Cell 35, 818-829.   DOI
11 Donzelli, M. and Draetta, G. F. 2003. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. 4, 671-677.   DOI
12 Coulonval, K., Nockstaele, L., Paternot, S. and Roger, P. P. 2003. Phosphorylations of cyclin-dependent kinase 2 revisited using two-dimensional gel electrophoresis. J. Biol. Chem. 278, 52052-52060.   DOI
13 Devasagayam, T. P., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S. and Lele, R. D. 2004. Free radicals and antioxidants in human health: current status and future prospects. J. Assoc. Physicians India 52, 794-804.
14 Dickinson, B. C. and Chang, C. J. 2011. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504-511.   DOI
15 Dorai, T. and Aggarwal, B. B. 2004. Role of chemopreventive agents in cancer therapy. Cancer Lett. 215, 129-140.   DOI
16 Dulic, V., Kaufmann, W. K., Wilson, S. J., Tisty, T. D., Lees, E., Harper, J. W., Elledge, S. J. and Reed, S. I. 1994. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76, 1013-1023.   DOI
17 Eymin, B., Claverie, P., Salon, C., Leduc, C., Col, E., Brambilla, E., Khochbin, S. and Gazzeri, S. 2006. p14ARF activates a Tip60-dependent and p53-independent ATM/ATR/CHK pathway in response to genotoxic stress. Mol. Cell Biol. 26, 4339-4350.   DOI
18 Choi, I. P. 2013. Reactive oxygen species and cancer. Hanyang Med. Rev. 33, 118-122.   DOI
19 Galaktionov, K., Lee, A. K., Eckstein, J., Draetta, G., Meckler, J., Loda, M. and Beach, D. 1995. CDC25 phosphatases as potential human oncogenes. Science 269, 1575-1577.   DOI
20 Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J. and Lukas, J. 2001. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842-847.   DOI
21 Halliwell, B. H. and Gutteridge, J. M. C. 1990. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186, 1-85.   DOI
22 Gasparotto, D., Maestro, R., Piccinin, S., Vukosavljevic, T., Barzan, L., Sulfaro, S. and Boiocchi, M. 1997. Overexpression of CDC25A and CDC25B in head and neck cancers. Cancer Res. 57, 2366-2368.
23 GBD 2015 Risk Factors Collaborators. 2016. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659-1724.   DOI
24 Gonzalez-Burgos, E. and Gomez-Serranillos, M. P. 2012. Terpene compounds in nature: a review of their potential antioxidant activity. Curr. Med. Chem. 19, 5319-5341.   DOI
25 Hanahan, D. and Weinberg, R. A. 2000. The hallmarks of cancer. Cell 100, 57-65.   DOI
26 Hartwell, L. H. and Kastan, M. B. 1994. Cell cycle control and cancer. Science 266, 1821-1828.   DOI
27 Kedare, S. B. and Singh, R. P. 2011. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 48, 412-422.   DOI
28 Hoeijmakers, J. H. 2001. Genome maintenance mechanisms for preventing cancer. Nature 411, 366-374.   DOI
29 Ito, Y., Yoshida, H., Uruno, T., Takamura, Y., Miya, A., Kuma, K. K. and Miyauchi, A. 2004. Expression of cdc25A and cdc25B phosphatase in breast carcinoma. Breast Cancer 11, 295-300.   DOI
30 Jin, P., Gu, Y. and Morgan, D. O. 1996. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J. Cell Biol. 134, 963-970.   DOI
31 Mailand, N., Falck, J., Lukas, C., Syljuasen, R. G., Welcker, M., Bartek, J. and Lukas, J. 2000. Rapid destruction of Cdc 25A in response to DNA damage. Science 288, 1425-1429.   DOI
32 Niedzwiecki, A., Roomi, M. W., Kalinovsky, T. and Rath, M. 2016. Anticancer efficacy of polyphenols and their combinations. Nutrients 8, E552.   DOI
33 Malumbres, M. and Barbacid, M. 2009. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153-166.   DOI
34 Mraz, M., Malinova, K., Kotaskova, J., Pavlova, S., Tichy, B., Malcikova, J., Stano, K. K., Smardova, J., Brychtova, Y., Doubek, M., Trbusek, M., Mayer, J. and Pospisilova, S. 2009. miR-34a, miR-29c and miR-17-5p are downregulated in CLL patients with TP53 abnormalities. Leukemia 23, 1159-1163.   DOI
35 Neergheen, V. S., Bahorun, T., Taylor, E. W., Jen, L. S. and Aruoma, O. I. 2010. Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicology 278, 229-241.   DOI
36 Nilsson, I. and Hoffmann, I. 2000. Cell cycle regulation by the Cdc25 phosphatase family. Prog. Cell Cycle Res. 4, 107-114.   DOI
37 Singleton, V. L. and Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic -phosphotungstic acid reagents. Am. J. Enol.Vitic. 16, 144-158.
38 O'Connor, P. M. 1997. Mammalian G1 and G2 phase checkpoints. Cancer Surv. 29, 151-182.
39 Rix, M. 2013. LITSEA POPULIFOLIA. Curtis's Botanical Magazine 30, 193-200.   DOI
40 Ryan, K. M., Phillips, A. C. and Vousden, K. H. 2001. Regulation and function of the p53 tumor suppressor protein. Curr. Opin. Cell Biol. 13, 332-337.   DOI
41 Vermeulen, K., Van Bockstaele, D. R. and Berneman, Z. N. 2003. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36, 131-149.   DOI
42 Vogelstein, B., Lane, D. and Levine, A. J. 2000. Surfing the p53 network. Nature 408, 307-310.   DOI