• Title/Summary/Keyword: Radiation-induced Growth

Search Result 161, Processing Time 0.029 seconds

Comparison of tdcA Expression Between Escherichia coli and Salmonella enterica Serovar Typhimurium

  • Kim, Min-Jeong;Lim, Sang-Yong;Ryu, Sang-Ryeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.252-255
    • /
    • 2011
  • Both Escherichia coli (E. coli) and Salmonella enterica serovar Typhimurium (S. Typhimurium) have a tdc operon that encodes enzymes involved in a metabolic pathway for the degradation of L-serine and L-threonine. However, S. Typhimurium does not have the tdcR gene, which is a positive regulator in E. coli. In the present study, transcriptional analysis revealed that tdcA expression in E. coli is higher under anaerobic than aerobic growth conditions, but the opposite is true in S. Typhimurium. Interestingly, a tdcR mutant strain of E. coli showed a similar expression pattern to that observed in S. Typhimurium and was also induced by anaerobic shock. These results suggest that the induction of tdcA expression by anaerobic conditions is observable when tdcA expression is low owing to the absence of TdcR.

In Vitro Radiosensitization of Flavopiridol Did Not Translated into In Vivo Radiosensitization (마우스를 이용한 생체내 실험에서의 플라보피리돌의 방사선민감화 효과)

  • Kim, Su-Zy
    • Radiation Oncology Journal
    • /
    • v.29 no.2
    • /
    • pp.83-90
    • /
    • 2011
  • Purpose: Flavopiridol enhanced radiation-induced apoptosis of cancer cells in our previous in vitro study. The purpose of this study was to assess if flavopiridol could enhance the radioresponse of mouse mammary tumors in vivo. Materials and Methods: Balb/c mice bearing EMT-6 murine mammary carcinoma were treated with flavopiridol only, radiation only, or both for 7 days. Flavopiridol was administered 2.5 mg/kg twice a day intraperitoneally (IP). Radiation was delivered at a 4 Gy/fraction at 24-h intervals for a total dose of 28 Gy. Tumor volume was measured and compared among the different treatment groups to evaluate the in vivo radiosensitizing effect of flavopiridol. Tumors were removed from the mice 20 days after treatment, and TUNEL and Immunohistochemical stainings were performed. Results: Significant tumor growth delay was observed in the radiation only and combined treatment groups, when compared with the control group. However, there was no significant difference between the tumor growth curves of the control and flavopiridol only group or between the radiation only and combination treatment group. Apoptotic cells of different treatment groups were detected by terminal deoxynucleotidyl transferase-medicated nick end labeling (TUNEL) staining. The expressions of Ku70 in tumor tissues from the different groups were analyzed by immunohistochemistry. Similarly, no significant difference was found between the apoptotic rate or Ku70 expression among the different treatment groups. Conclusion: Flavopiridol did not show evidence of enhancing the radioresponse of mouse mammary tumors in this study.

Effects of Gamma-ray Irradiation on Radio Sensitivity in Oat (Avena sativa) (감마선 조사가 귀리(Avena sativa)의 감수성에 미치는 영향)

  • Ryu, Jaihyunk;Kwon, Soon-Jae;Im, Seung Bin;Jeong, Sang Wook;Ahn, Joon-Woo;Kim, Jin-Back;Choi, Ki Choon;Kim, Won Ho;Kang, Si-Yong
    • Korean Journal of Plant Resources
    • /
    • v.29 no.1
    • /
    • pp.128-135
    • /
    • 2016
  • This study examined radiation damage and the optimal gamma-ray dose for mutation breeding in oat (Avena sativa L. cv. Samhan). The seed germination rate decreased as the dose increased over 500 Gy. The median lethal dose (LD50) was approximately 392 Gy. The median reduction dose (RD50) for plant height, tiller number, root length, and flash weight was 411, 403, 394, and 411 Gy, respectively. The optimal dose of gamma irradiation for inducing oat mutation appears to be in the range 300-400 Gy. We performed the comet assay to observe nuclear DNA damage induced by gamma-ray irradiation. This assay showed a clear difference with gamma-ray treatments. DNA damage increased temporarily 7 days after treatment depending on the dose, while no significant difference was identified in response to 300 Gy 30 days after the gamma-ray treatments. The growth characteristics of the M2 generation decreased as the dose increased over 400 Gy.

Radiosensitivity of Lentil Bean (Lens culinaris L.) to Gamma-irradiation (감마선 조사가 렌틸(Lens culinaris L.)의 감수성에 미치는 영향)

  • Lee, Min-kyu;Ryu, Jaihyunk;Jeong, Sang Wook;Kim, Jin-Baek;Kang, Si-Yong;Kwon, Soon-Jae
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.211-217
    • /
    • 2016
  • We examined damages from gamma-irradiaion and determined the optimal gamma-ray dose for mutation breeding in lentil (Lens culinaris L.) bean. Four individual lines (L-C, L-2, L-8 and L-9), that have remarkable adaptability in South Korea were gamma-irradiated at doses of 50, 70, 100, 200, 300, 400, and 500 Gy. The germination rate of seed decreased as the dose increased over 50 Gy in all lines. However, $LD_{50}$ and $RD_{50}$ were different among lines. The median lethal doses($LD_{50}$) were approximately 127 (L-C), 74 (L-2), 95 (L-8), and 144 (L-9) Gy. The median reduction doses($RD_{50}$) for plant height, number of leaves, root length, and flash weight were 156, 176, 150, and 180 Gy for L-C, 253, 198, 127, and 142 Gy for L-2, 188, 175, 200, and 190 Gy for L-8, and 162, 210, 224, and 184 for L-9, respectively. The growth characteristics of the $M_1$ generation decreased as the dose increased over 70 Gy. The optimal doses of gamma irradiation for mutation breeding of lentil were determined to be 70 Gy (L-2, L-8) and 100 Gy (L-C, L-9). We performed the comet assay to observe nuclear DNA damage induced by gamma-irradiation. In comet assay, a clear difference was identified over 100 Gy treatments. With increasing doses of gamma-ray in the range of 50 to 500 Gy, the rate of head DNA was decreased significantly from 97.5% to 81.6%. Tail length was consecutively increased from $1.9{\mu}m$ to $17.4{\mu}m$. Our result provides basic information for construction of mutant pools in lentils.

Pemetrexed Induces G1 Phase Arrest and Apoptosis through Inhibiting Akt Activation in Human Non Small Lung Cancer Cell Line A549

  • Wu, Dong-Ming;Zhang, Peng;Xu, Guang-Chao;Tong, Ai-Ping;Zhou, Cong;Lang, Jin-Yi;Wang, Chun-Ting
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1507-1513
    • /
    • 2015
  • Pemetrexed is an antifolate agent which has been used for treating malignant pleural mesothelioma and non small lung cancer in the clinic as a chemotherapeutic agent. In this study, pemetrexed inhibited cell growth and induced G1 phase arrest in the A549 cell line. To explore the molecular mechanisms of pemetrexed involved in cell growth, we used a two-dimensional polyacrylamide gel electrophoresis (2-DE) proteomics approach to analyze proteins changed in A549 cells treated with pemetrexed. As a result, twenty differentially expressed proteins were identified by ESI-Q-TOF MS/MS analysis in A549 cells incubated with pemetrexed compared with non-treated A549 cells. Three key proteins (GAPDH, HSPB1 and EIF4E) changed in pemetrexed treated A549 cells were validated by Western blotting. Accumulation of GAPDH and decrease of HSPB1 and EIF4E which induce apoptosis through inhibiting phosphorylation of Akt were noted. Expression of p-Akt in A549 cells treated with pemetrexed was reduced. Thus, pemetrexed induced apoptosis in A549 cells through inhibiting the Akt pathway.

Dosimetric characterization and commissioning of a superficial electronic brachytherapy device for skin cancer treatment

  • Park, Han Beom;Kim, Hyun Nam;Lee, Ju Hyuk;Lee, Ik Jae;Choi, Jinhyun;Cho, Sung Oh
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.937-943
    • /
    • 2018
  • Background: This work presents the performance of a novel electronic brachytherapy (EBT) device and radiotherapy (RT) experiments on both skin cancer cells and animals using the device. Methods and materials: The performance of the EBT device was evaluated by measuring and analyzing the dosimetric characteristics of X-rays generated from the device. The apoptosis of skin cancer cells was analyzed using B16F10 melanoma cancer cells. Animal experiments were performed using C57BL/6 mice. Results: The X-ray characteristics of the EBT device satisfied the accepted tolerance level for RT. The results of the RT experiments on the skin cancer cells show that a significant apoptosis induction occurred after irradiation with 50 kVp X-rays generated from the EBT device. Furthermore, the results of the animal RT experiments demonstrate that the superficial X-rays significantly delay the tumor growth and that the tumor growth delay induced by irradiation with low-energy X-rays was almost the same as that induced by irradiation with a high-energy electron beam. Conclusions: The developed new EBT device has almost the same therapeutic effect on the skin cancer with a conventional linear accelerator. Consequently, the EBT device can be practically used for human skin cancer treatment in the near future.

Identification and Characterization of External Copper Responsive Genes of Deinococcus radiodurans (DNA Microarry를 이용한 Deinococcus radiodurans의 구리이온 특이 반응 유전자 탐색 및 특성 분석)

  • Joe, Min-Ho;Lim, Sang-Yong;Jung, Sun-Wook;Song, Du-Sub;Choi, Young-Ji;Kim, Dong-Ho
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.169-177
    • /
    • 2008
  • Global gene expression of Deinococcus radiodurans, a highly radiation resistant bacterium, in response to excess copper was analyzed by using oligonucleotide microarray chip. Among 3,187 open reading frames of D. radiodurans, seventy genes showed a statistically significant expression ratio of at least 2-fold changes under growth conditions of excess copper; 64 genes were induced and 6 genes were reduced. Especially, two operons ($DRB0014{\sim}DRB0017$ and $DRB0125{\sim}DRB0121$) presumably involved in the iron transport and utilization were the most highly induced genes by excess copper. A quantitative real-time PCR assay revealed that DRB00l4 and DRB0125 are highly transcribed responding to excess copper and 2,2'-dipyridyl, an iron chelator. In addition, the transcription of both genes was not changed by excess iron and bathocuproine disulphonate, a copper chelator. These results suggested that the copper metabolism may be closely connected with the iron transport and utilization in D. radiodurans. However, the disruption of each gene, DRB00l4 and DRB0125, did not affect the copper and radiation resistance, the most well-known character of this organism.

Effects of Recombinant Human Epidermal Growth Factor on the Proliferationand Radiation Survival of Human Fibroblast Cell Lines in Vitro (재조합 표피성장인자가 방사선이 조사된 섬유아세포 증식에 미치는 영향)

  • Kim, Hyun-Sook;Kang, Ki-Mun;Lee, Sang-Wook;Na, Jae-Boem;Chai, Gyu-Young
    • Radiation Oncology Journal
    • /
    • v.24 no.3
    • /
    • pp.179-184
    • /
    • 2006
  • [ $\underline{Purpose}$ ]: To explore the effect of recombinant human EGF on the proliferation and survival of human fibroblast cell lines following irradiation. $\underline{Materials\;and\;Methods}$: Fibroblast was originated human skin and primary cultured. The trypan blue stain assay and MTT assay were used to study the proliferative effects of EGF on human fibroblast cell lines in vitro. An incubation of fibroblasts with rhEGF for 24 hours immediately after irradiation was counted everyday. Cell cycle distributions were analyzed by FACS analysis. $\underline{Results}$: Number of fibroblast was significantly more increased rhEGF (1.0 nM, 10 nM, 100 nM, 1,000 nM) treated cell than control after 8 Gy irradiation. Most effective dose of rhEGF was at 160 nM. These survival differences were maintained at 1 week later. Proportion of S phase was significantly increased on rhEGF treated cells. $\underline{Conclusion}$: rhEGF cause increased fibroblast proliferation following irradiation. We expect that rhEGF was effective for radiation induced wound healing.

Fenofibrate Increases Radiosensitivity in Head and Neck Squamous Cell Carcinoma via Inducing G2/M Arrest and Apoptosis

  • Liu, Jia;Ge, Yang-Yang;Zhu, Hong-Cheng;Yang, Xi;Cai, Jing;Zhang, Chi;Lu, Jing;Zhan, Liang-Liang;Qin, Qin;Yang, Yan;Yang, Yue-Hua;Zhang, Hao;Chen, Xiao-Chen;Liu, Zhe-Ming;Ma, Jian-Xin;Cheng, Hong-Yan;Sun, Xin-Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6649-6655
    • /
    • 2014
  • Radiation therapy is an important treatment for head and neck squamous cell carcinoma (HNSCC). However, how to promote radiation sensitivity in HNSCC remains a challenge. This study aimed to investigate the radiosensitizing effects of fenofibrate on HNSCC and explore the underlying mechanisms. HNSCC cell lines CNE-2 and KB were subjected to ionizing radiation (IR), in the presence or absence of fenofibrate treatment. Cell growth and survival, apoptosis and cell cycle were evaluated. In addition, CNE-2 cells were xenografted into nude mice and subjected to IR and/or fenofibrate treatment. The expression of cyclinB and CDK1 was detected by Western blotting. Our results showed that fenofibrate efficiently radiosensitized HNSCC cells and xenografts in mice, and induced apoptosis and G2/M arrest via reducing the activity of the CDK1/cyclinB1 kinase complex. These data suggest that fenofibrate could be a promising radiosensitizer for HNSCC radiotherapy.

TEM investigation of helium bubble evolution in tungsten and ZrC-strengthened tungsten at 800 and 1000℃ under 40keV He+ irradiation

  • I. Ipatova;G. Greaves;D. Terentyev;M.R. Gilbert;Y.-L. Chiu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1490-1500
    • /
    • 2024
  • Helium-induced defect nucleation and accumulation in polycrystalline W and W0.5 wt%ZrC (W0.5ZrC) were studied in-situ using the transmission electron microscopy (TEM) combined with 40 keV He+ irradiation at 800 and 1000℃ at the maximum damage level of 1 dpa. Radiation-induced dislocation loops were not observed in the current study. W0.5ZrC was found to be less susceptible to irradiation damage in terms of helium bubble formation and growth, especially at lower temperature (800 ℃) when vacancies were less mobile. The ZrC particles present in the W matrix pin the forming helium bubbles via interaction between C atom and neighbouring W atom at vacancies. This reduces the capability of helium to trap a vacancy which is required to form the bubble core and, as a consequence, delays, the bubble nucleation. At 1000 ℃, significant bubble growth occurred in both materials and all the present bubbles transitioned from spherical to faceted shape, whereas at 800 ℃, the faceted helium bubble population was dominated in W.