Browse > Article
http://dx.doi.org/10.7732/kjpr.2016.29.1.128

Effects of Gamma-ray Irradiation on Radio Sensitivity in Oat (Avena sativa)  

Ryu, Jaihyunk (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Kwon, Soon-Jae (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Im, Seung Bin (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Jeong, Sang Wook (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Ahn, Joon-Woo (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Kim, Jin-Back (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Choi, Ki Choon (National institute of animal science)
Kim, Won Ho (National institute of animal science)
Kang, Si-Yong (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Publication Information
Korean Journal of Plant Resources / v.29, no.1, 2016 , pp. 128-135 More about this Journal
Abstract
This study examined radiation damage and the optimal gamma-ray dose for mutation breeding in oat (Avena sativa L. cv. Samhan). The seed germination rate decreased as the dose increased over 500 Gy. The median lethal dose (LD50) was approximately 392 Gy. The median reduction dose (RD50) for plant height, tiller number, root length, and flash weight was 411, 403, 394, and 411 Gy, respectively. The optimal dose of gamma irradiation for inducing oat mutation appears to be in the range 300-400 Gy. We performed the comet assay to observe nuclear DNA damage induced by gamma-ray irradiation. This assay showed a clear difference with gamma-ray treatments. DNA damage increased temporarily 7 days after treatment depending on the dose, while no significant difference was identified in response to 300 Gy 30 days after the gamma-ray treatments. The growth characteristics of the M2 generation decreased as the dose increased over 400 Gy.
Keywords
Growth characteristics; Radiation damage; Optimal dose; Comet assay;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Cvejic, S., R. Afza, S. Jocic, S. Prodanovic, V. Miklic, D. Soric and S. Dragin. 2011. Radiosensitivity of sunflower inbred lines to mutagenesis. HELIA. Nr. 54: 99-106.
2 Delincéee, H., E. Marchioni and C. Hasselmann. 1993. Changes in DNA for the detection of irradiated food. EUR-15012, Commission of the European Communities, Luxembourg, pp. 1-24.
3 Sung, S.Y., Y.M. Lee, S.H. Kim, B.H. Ha, S.Y. Kang, J.B. Kim and D.S. Kim. 2013. Comparative analysis of growth and antioxidant enzyme activities from two Chrysanthemum varieties, ‘ARTI-purple’ and ‘ARTI-queen’ by chronic irradiation of gamma-ray. Kor. J. Hort. Sci. Technol. 31(4):490-495 (in Korean).
4 Zhang, Q. and H.Y. Kim. 2014. DNA Damage protection and anti-inflammatory activity of different solvent fractions from Aruncus dioicus var. kamtschaticus Korean J. Plant Res. 27(6):714-719.   DOI
5 Wada, H., T. Koshiba, T. Matsui and M. Sato. 1998. Involvement of peroxidase in differential sensitivity to irradiation in seedlings of two Nicotiana species. Plant Sci. 132:109-119.   DOI
6 Yamaguchi, H., Y. Hase, A. Tanaka, N. Shikazono, K. Degi, A. Shimizu and T. Morishita. 2009. Mutagenic effects of ion beam irradiation on rice. Breeding Sci. 59:169-177.   DOI
7 Yonezawa, K. and H. Yamagata H. 1977. On the optimum mutation rate and optimum dose for practical mutation breeding. Euphytica 26:413-426.   DOI
8 Lee, S.E., J.R. Kim, H.J. Noh, G.S. Kim, J.H. Lee, J. Choi, D.Y. Lee and S.Y. Kim. 2014. Screening of plants with inhibitory activity on cellular senescence. Korean J. Plant Res. 27(6):601-609.   DOI
9 Misra, P., S.K. Datta and D. Chakrabarty. 2003. Mutation in flower colour and shape of Chrysanthemum morifolium induced by γ-radiation. Biol. Plant. 47:153-156.
10 Nair, K.A. and M.S. Netrawali. 1979. Sensitivity of light-grown and dark-grown Euglena cells to gamma-irradiation. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 36(3):223-31.
11 Niels, W.H. and J.B. Roger. 1970. Manual on radiation dosimetry. Mard Dekker Inc. New York, USA.
12 Orford, J.K. 1995. Lower threshold energy gamma ray Cerenkov telescopes. Experimental Astron. 6(1):1-5.   DOI
13 Shikazono, N., Y. Yokota, A. Tanaka, H. Watanabe and S. Tano. 1998. Molecular analysis of carbon ion-induced mutations in Arabidopsis thaliana. Genes Genet. Syst. 73:173-179.   DOI
14 Shin, C.N. and B.H. Kim. 1993. Dry matter yield and feed value of oat plant at various planting and harvesting date in fall. Grassl. Sci. 13(4):294-299.
15 Rural Development Adminstration (RDA). 2011. Roughage. Suwon, Korea. pp. 33-38 (in Korean).
16 Ryu, J.H., S.B. Im, D.S. Kim, J.W. Ahn, J.B. Kim, S.H. Kim and S.Y. Kang. 2014. Effects of Gamma-ray irradiation on growth characteristics and DNA damage in licorice (Glycyrrhiza uralensis). Radiation Indust. 8(2):89-95 (in Korean).
17 Ryu, J.H., H.S. So, J.I. Ryu, O.D. Kwon, Y.I. Lee, I.D. Jin, H.Y. Lee and C.H. Bae. 2012. Genetic variation analysis of early-heading plant (Oryza sativa L.). lines derived from gamma-ray irradiation. Korean J. Plant Res. 25(1):142-151 (in Korean).   DOI
18 Dhawan, A., M. Bajpayee and D. Parmar. 2009. Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol. Toxicol. 25:5-32.   DOI
19 Eun, J.S., J.S. Kim, H.S. Lim, S.K. Han, S.R. Choi and Y.S. Jang. 2007. Effect of proton ion and gamma-ray irradiation on radiosensitivity of M1 seedlings in Brassica napus. Kor. J. Hort. Sci. Technol. 25(1):17-23 (in Korean).
20 Golubinova, I. and K. Gecheff. 2011. M1 cytogenetic and physiologiccal effects of gamma-rays in sudan grass (Sorghum sudabense Piper. stape). Agricul. Sci. 17(4):417-423.
21 Fairbairn, D.W., P.L. Olive and K.L. Oneill. 1995. The comet assay : A comprehensive review. Mutation Res. 339:37-59.   DOI
22 Kim, J.R. and D.A. Kim. 1992. Effect of spring seeding dates on growth, forage yield and quality of early and late maturing oat cultivars. Grassl. Sci. 12(2): 111-122 (in Korean).
23 Kwon, S.T., I.S. Kwun and Y.M. Park. 2009. Effects of yam (Dioscorea batatas Dence) extracts on the growth and nucleus-DNA damage of the plant cells treated with γ-radiation. Korean J. Plant Res. 22(5):461-466 (in Korean).
24 Kang, E.J., Y.M. Lee, S.Y. Sung, B.K. Ha, S.H. Kim, D.S. Kim, J.B. Kim and S.Y. Kang. 2013. Analysis of the genetic relationship of gamma-irradiated in Vitro mutants derived from standard-type Chrysanthemum cv. Migok. Hort. Environ. Biotechnol. 54(1):76-81.   DOI
25 Kimura, M. and T. Ohta. 1971. Protein polymorphism as a phase of molecular evolution. Nature 229:467-469.   DOI
26 Kim, C.Y. G.T. Cho, J. Lee, J.S. Sung, S.Y. Na, M.S. Yoon, H.J. Baek, H.C. Ko and Y.H. Cho. 2012. Introduction and significance on reintroduction of Korean native plant genetic resources from foreign countries. Korean J. Intl. Agri. 24(1):22-31 (in Korean).
27 Bae, C.H., J.S. Chai, J.H. Kim, T.G. Yang, J.I. Lyu, H.Y. Lee and D.C. Yang. 2005. Characteristics of tobacco and rice plants irradiated with neutron beam. Korean J. Plant Res. 18(3):359-366 (in Korean).
28 Coffman, F.A. 1961. Oats and oats improvement. The Amer. Soc. Agron. Monogr. Vol. 8. USA. pp. 31-62.
29 Bray, C.M. and C.E. West. 2005. DNA repair mechanisms in plants: Crucial sensors and effectors for the maintenance of genome integrity. New Phytol. 168:511-528.   DOI
30 Cerda, H., H. Delincéee, H. Haine and H. Rupp. 1997. The DNA comet assay as a rapid screening technique to control irradiated food. Mutation Res. 375:167-181.   DOI
31 Chontira, S., S. Worawit and S. Peerasak. 2005. Gamma radiation induced mutations in mungbean. Sci. Asia 31:251-255.   DOI