Browse > Article

Identification and Characterization of External Copper Responsive Genes of Deinococcus radiodurans  

Joe, Min-Ho (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute)
Lim, Sang-Yong (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute)
Jung, Sun-Wook (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute)
Song, Du-Sub (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute)
Choi, Young-Ji (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute)
Kim, Dong-Ho (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute)
Publication Information
Korean Journal of Microbiology / v.44, no.3, 2008 , pp. 169-177 More about this Journal
Abstract
Global gene expression of Deinococcus radiodurans, a highly radiation resistant bacterium, in response to excess copper was analyzed by using oligonucleotide microarray chip. Among 3,187 open reading frames of D. radiodurans, seventy genes showed a statistically significant expression ratio of at least 2-fold changes under growth conditions of excess copper; 64 genes were induced and 6 genes were reduced. Especially, two operons ($DRB0014{\sim}DRB0017$ and $DRB0125{\sim}DRB0121$) presumably involved in the iron transport and utilization were the most highly induced genes by excess copper. A quantitative real-time PCR assay revealed that DRB00l4 and DRB0125 are highly transcribed responding to excess copper and 2,2'-dipyridyl, an iron chelator. In addition, the transcription of both genes was not changed by excess iron and bathocuproine disulphonate, a copper chelator. These results suggested that the copper metabolism may be closely connected with the iron transport and utilization in D. radiodurans. However, the disruption of each gene, DRB00l4 and DRB0125, did not affect the copper and radiation resistance, the most well-known character of this organism.
Keywords
copper; Deinococcus radiodurans; iron; microarray;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Georgatsou, E., L.A. Mavrogiannis, G.S. Fragiadakis, and D. Alexandraki. 1997. The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Maclp activator. J. Biol. Chem. 272, 13786-13792   DOI   ScienceOn
2 Nishida, H. and I. Narumi. 2002. Disruption analysis of DR1420 and/or DR1758 in the extremely radioresistant bacterium D. radiodurans Microbiology 148, 2911-2914   DOI
3 Pufahl, R.A., C.P. Singer, K.L. Peariso, S.J. Lin, P.J. Schmidt, C.J. Fahrni, V.C. Culotta, J.E. Penner-Hahn, and T.V. O'Halloran. 1997. Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278, 853-856   DOI
4 Rensing, C. and G. Grass. 2003. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 27, 197-213   DOI   ScienceOn
5 Spizzo, T., C. Byersdorfer, S. Duesterhoeft, and D. Eide. 1997. The yeast FET5 gene encodes a FET3-related multicopper oxidase implicated in iron transport. Mol. Gen. Genet. 256, 547-55   PUBMED
6 Wilhelm, J. and A. Pingoud. 2003. Real-time polymerase chain reaction. Chembiochem. 4, 1120-1128   DOI   ScienceOn
7 Yamaguchi, I.Y., M. Serpe, D. Haile, W. Yang, D.J. Kosman, R.D. Klausner, and A. Dancis. 1997. Homeostatic regulation of copper uptake in yeast via direct binding of MACl protein to upstream regulatory sequences of FREl and CTRl. J. Biol. Chem. 272, 17711-17718   DOI   ScienceOn
8 Odermatt, A. and M. Solioz. 1995. Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPase of Enterococcus hirae. J. Biol. Chem. 270, 4349-4354   DOI   ScienceOn
9 Nies, D.H. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27, 313-339   DOI   ScienceOn
10 Grass, G. and C. Rensing. 2001. Genes involved in copper homeostasis in Escherichia coli. J. Bacteriol. 183, 2145-2147   DOI   ScienceOn
11 Banci, L., I. Bertini, S. Ciofi-Baffoni, E. Katsari, N. Katsaros, K. Kubicek, and S. Mangani. 2005. A copper(I) protein possibly involved in the assembly of CuA center of bacterial cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 102, 3994-3999
12 Sambrook, J. and D.W. Russell. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA
13 Funayama, T., I. Narumi, M. Kikuchi, S. Kitayama, H. Watanabe, and K. Yamamoto. 1999. Identification and disruption analysis of the recN gene in the extremely radioresistant bacterium Deinococcus radiodurans. Mutat. Res. 435, 151-161   DOI   PUBMED   ScienceOn
14 Yamamoto, K. and A. Ishihama. 2005. Transcriptional response of Escherichia coli to external copper. Mol. Microbiol. 56, 215-227   DOI   ScienceOn
15 Cha, J.S. and K.A. Cooksey. 1991. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc. Natl. Acad. Sci. USA 88, 8915-8919
16 Makarova, K.S., L. Aravind, Y.I. Wolf, R.L. Tatusov, K.W. Minton, E.V. Koonin, and M.J. Daly. 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65, 44-79   DOI   ScienceOn
17 Van Bakel, H., E. Strengman, C. Wijmenga, and F.C. Holstege. 2005. Gene expression profiling and phenotype analyses of S. cerevisiae in response to changing copper reveals six genes with new roles in copper and iron metabolism. Physiol. Genomics 22, 356-367   DOI   ScienceOn
18 Halliwell, B. and J.M.C. Gutteridge. 1999. Free radicals in biology and medicine, 3rd ed., p. 105-112. Oxford University Press, NY, USA
19 Pena, M.M.O., J. Lee, and D.J. Thiele. 1999. A delicate balance: homeostatic control of copper uptake and distribution. J. Nutr. 129, 1251-1260   DOI   PUBMED
20 Livak, K. and T. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}Ct}$ method. Methods 25, 402-408   DOI   ScienceOn
21 Makarova, K.S., M.V. Omelchenko, E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, M. Zhai, A. Lapidus, A. Copeland, E. Kim, M. Land, K. Mavrommatis, S. Pitluck, P.M. Richardson, C. Detter, T. Brettin, E. Saunders, B. Lai, B. Ravel, K.M. Kemner,Y.I. Wolf, A. Sorokin, A.V. Gerasimova, M.S. Gelfand, J.K. Fredrickson, E.V. Koonin, and M.J. Daly. 2007. Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. PLoS ONE. 26, 2(9):e955   DOI
22 Rensing, C., B. Fan, R. Harma, B. Mitra, and B.P. Rosen. 2000. CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 97, 652-656
23 Solioz, M. and A. Odermatt. 1995.Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J. Biol. Chem. 270, 9217-9221   DOI   ScienceOn
24 Odermatt, A., H. Suter, R. Krapf, and M. Solioz. 1993. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J. Biol. Chem. 268, 12775-12779
25 Lim, S.Y., M.H. Joe, S.S. Song, M.H. Lee, J.W. Foster, Y.K. Park, S.Y. Choi, and I.S. Lee. 2002. CuiD is a crucial gene for survival at high copper environment in Salmonella entericaserovar Typhimurium. Mol. Cells 14, 177-184   PUBMED
26 Dancis, A., D. Haile, D.S. Yuan, and R.D. Klausner. 1994. The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J. Biol. Chem. 269, 25660-25667
27 White, O., J.A. Eisen, J.F. Heidelberg, E.K. Hickey, J.D. Peterson, J.D. Robert, H.H. Daniel, L.G. Michelle, C.N. William, L.R. Delwood, S.M. Kelly, Q. Haiying, J. Lingxia, P. Wanda, C. Marie, S. Mian, J.V. Jessica, L. Peter, M. Lisa, U. Terry, et al. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286, 1571-1577   DOI
28 Outten, F.W., C.E. Outten, J. Hale, and T.V. O'Halloran. 2000. Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J. Biol. Chem. 275, 31024-31029   DOI