• Title/Summary/Keyword: Radiation degradation

Search Result 285, Processing Time 0.021 seconds

A novel radiation-dependence model of InP HBTs including gamma radiation effects

  • Jincan Zhang;Haiyi Cai;Na Li;Liwen Zhang;Min Liu;Shi Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4238-4245
    • /
    • 2023
  • In order to predict the lifetime of InP Heterojunction Bipolar Transistor (HBT) devices and related circuits in the space radiation environment, a novel model including gamma radiation effects is proposed in this paper. Based on the analysis of radiation-induced device degradation effects including both DC and AC characteristics, a set of empirical expressions describing the device degradation trend are presented and incorporated into the Keysight model. To validate the effective of the proposed model, a series of radiation experiments are performed. The correctness of the novel model is validated by comparing experimental and simulated results before and after radiation.

A study on radiation degradation of LDPE by using ESR (ESR을 이용한 저밀도 폴리에틸렌의 방사선 열화에 관한 연구)

  • Kim, Ki-Yup;Kim, Jin-Ah;Lee, Chung;Kim, Pyeong-Jong;Ryu, Boo-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.473-476
    • /
    • 2004
  • This study has investigated radiation degradation of low density polyethylene(LDPE). Samples were irradiated using a $Co^{60}\;\gamma-ray$ and ray up to 800 kGy at a dose rate of 5 kGy/hr in the presence of air atmosphere at room temperature. After irradiation, free radical measurement of LDPE has established by electron spin resonance(ESR). Then, each sample was stored for 2 weeks. ESR measurement showed that free radical concentration(FRC) was increased with radiation dose and changed from alkyl, allyl radical to peroxy radical with time.

  • PDF

Effects of heat and gamma radiation on the degradation behaviour of fluoroelastomer in a simulated severe accident environment

  • Inyoung Song ;Taehyun Lee ;Kyungha Ryu ;Yong Jin Kim ;Myung Sung Kim ;Jong Won Park;Ji Hyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4514-4521
    • /
    • 2022
  • In this study, the effects of heat and radiation on the degradation behaviour of fluoroelastomer under simulated normal operation and a severe accident environment were investigated using sequential testing of gamma irradiation and thermal degradation. Tensile properties and Shore A hardness were measured, and thermogravimetric analysis was used to evaluate the degradation behaviour of fluoroelastomer. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the structural changes of the fluoroelastomer. Heat and radiation generated in nuclear power plant break and deform the chemical bonds, and fluoroelastomer exposed to these environments have decreased C-H and functional groups that contain oxygen and double bonds such as C-O, C=O and C=C were generated. These functional groups were formed by auto oxidation by reacting free radicals generated from the cleaved bond with oxygen in the atmosphere. In this auto oxidation reaction, crosslinks were generated where bonded to each other, and the mobility of molecules was decreased, and as a result, the fluoroelastomer was hardened. This hardening behaviour occurred more significantly in the severe accident environment than in the normal operation condition, and it was found that thermal stability decreased with the generation of unstable structures by crosslinking.

Change of Lacquer Surface by Radiation (방사선에 의한 옻칠표면의 변화)

  • Yoon, Guk-joung
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.333-336
    • /
    • 2018
  • Natural lacquer was cured at room temperature at a relative humidity of 60% at $27^{\circ}C$ to obtain a lacquer film. Photolysis of lacquer was investigated by irradiating 1~75 kGy of gamma ray to this lacquer film. No significant changes were observed in the range of 1~10 kGy radiation. As the radiation doses were increased, the white spots were increased in the scanning electron microscope photographs. The increase of the white dots of the lacquer surface shows that the lacquer is degradation by radiation. As a result of IR spectral analysis of the lacquer surface with increasing irradiation dose, there was no significant change in $3,445cm^{-1}$ hydroxide group, $2,900cm^{-1}$ hydrocarbon group, and $993cm^{-1}$ triene group. However, the $1,745cm^{-1}$ carbonyl group was found to increase, and the $1,715cm^{-1}$ unsaturated hydrocarbon group and the $1,463cm^{-1}$ methylene group showed a tendency to decrease.

Proton Irradiation Effects on GaN-based devices

  • Keum, Dongmin;Kim, Hyungtak;Cha, Ho-Young
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.119-124
    • /
    • 2021
  • Along with the needs for feasibility in the field of space applications, interests in radiation-hardened electronics is growing rapidly. Gallium nitride (GaN)-based devices have been widely researched so far owing to superb radiation resistance. Among them, research on the most abundant protons in low earth orbit (LEO) is essential. In this paper, proton irradiation effects on parameter changes, degradation mechanism, and correlation with reliability of GaN-based devices are summarized.

Evaluation of Corrosion Degradation Characteristics of Turbine Blade Material Using Backward Radiated Ultrasound (후방복사된 초음파를 이용한 터빈 블레이드 재료의 부식 열화특성 평가)

  • Song, Sung-Jin;Kim, Young-H.;Bae, Dong-Ho;Jung, Min-Ho;Kwon, Sung-Duk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2322-2327
    • /
    • 2002
  • The corrosion degradation characteristics of the 12Cr alloy steel, which is widely used in fossil power plants as a turbine blade material, are evaluated nondestructively by use of the backward radiated Rayleigh surface wave. In order to evaluate corrosion degradation characteristics, we constructed automated system for the backward radiation, and the frequency dependency of the Rayleigh surface wave is investigated indirectly by measuring the angular dependency of the backward radiation of the incident ultrasonic wave in the specimens. The velocity of the surface wave decrease as the increase of the aging time in the backward radiation profile, which seems to result from the increase of the effective degrading layer thickness. And, amplitude of the surface wave increase as the aging time, which seems to result from the increase of the intergranular corrosion. The result observed in this study demonstrates high potential of the backward radiated ultrasound as a tool for the nondestructive evaluation of the corrosion degradation characteristics of the aged materials.

VARIATION OF NEUTRON MODERATING POWER ON HDPE BY GAMMA RADIATION

  • Park, Kwang-June;Ju, June-Sik;Kang, Hee-Young;Shin, Hee-Sung;Kim, Ho-Dong
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • High density polyethylene (HDPE) is degraded due to a radiation-induced oxidation when it is used as a neutron moderator in a neutron counter for a nuclear material accounting of spent fuels. The HDPE exposed to the gamma-ray emitted from the fission products in a spent nuclear fuel results in a radiation-induced degradation which changes its original molecular structure to others. So a neutron moderating power variation of HDPE, irradiated by a gamma radiation, was investigated in this work. Five HDPE moderator structures were exposed to the gamma radiation emitted from a $^{60}Co$ source to a level of $10^5-10^9$ rad to compare their post-irradiation properties. As a result of the neutron measurement test with 5 irradiated HDPE structures and a neutron measuring system, it was confirmed that the neutron moderating power for the $10^5$ rad irradiated HDPE moderator revealed the largest decrease when the un-irradiated pure one was used as a reference. It implies that a neutron moderating power variation of HDPE is not directly proportional to the integrated gamma dose rate. To clarify the cause of these changes, some techniques such as a FTIR, an element analysis and a densitometry were employed. As a result of these analyses, it was confirmed that the molecular structure of the gamma irradiated HDPEs had partially changed to others, and the contents of hydrogen and oxygen had varied during the process of a radiation-induced degradation. The mechanism of these changes cannot be explained in detail at present, and thus need further study.

Radiation Degradation Detection of LDPE Using Thermoluminescence Method (열발광 특성을 이용한 저밀도 폴리에틸렌의 방사선 열화 검출)

  • Lee, C.;Lee, K.W.;Park, J.N.;Lim, K.J.;Ryu, B.H.;Park, Y.G.;Kang, S.H.;Kim, K.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.43-46
    • /
    • 2001
  • Polymers are widely used as insulating materials at various part of power industry. However, electrical properties of these polymers are easily degraded with their working environments, especially radiation areas. In this research, radiation degradation of low density polyethylene (LDPE) used as cable insulation was evaluated with thermoluminescence characteristics. LDPE was irradiated with gamma ray up to 1000 kGy at a dose rate of 5 kGy/hr in the presence of air at room temperature. Each of the irradiated samples were carried out thermoluminescence analysis as a function of temperature. Interrelationships between thermoluminescence and dielectric characteristics and volume resistivity are investigated as well. The results of thermoluminescence analysis showed that those would be significant factors for evaluation of radiation degradation.

  • PDF

Ionizing Radiation Effect on the Carbohydrate Moiety of Chicken Ovomucoid (계란 ovomucoid의 탄수화물 부분에 미치는 이온화방사선의 영향)

  • Lee, Young-Keun;Kim, Jin-Kyu;Kim, Jae-Sung;Song, Hi-Sup;Charoen, Saovapong;Amornraksa, Kitti
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.1
    • /
    • pp.23-27
    • /
    • 1997
  • Radiation effects on carbohydrate moiety of chicken ovomucoid, a protease inhibitor as a typical allergenic glycoprotein of egg white, was observed. The trypsin inhibitory activity of chicken ovomucoid decreased exponentially and the inactivation was more significant irradiated in $N_2$ than in $O_2$. From the protein blotting, radiation caused protein degradation in $O_2$ and protein aggregation also in $N_2$. The patterns of carbohydrate blotting were also similar with that of protein blotting. Sugar chains in low molecular weight fraction (MW<5,000) were released by radiation and those in $O_2$ were higher than in $N_2$. From the HPLC patterns of the degradation of sugar chains, all peaks of oligosaccharides have the tendency to decrease with the increase of radiation dose and more remarkable in $O_2$ than in $N_2$. These results suggest that ionising radiation could cause the overall conformational changes of ovomucoid by the degradation and release of oligosaccharides.

  • PDF

State-of-Arts of Primary Concrete Degradation Behaviors due to High Temperature and Radiation in Spent Fuel Dry Storage (사용후핵연료 건식저장 콘크리트의 고열과 방사선으로 인한 주요 열화거동 분석)

  • Kim, Jin-Seop;Kook, Donghak;Choi, Jong-Won;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.243-260
    • /
    • 2018
  • A literature review on the effects of high temperature and radiation on radiation shielding concrete in Spent Fuel Dry Storage is presented in this study with a focus on concrete degradation. The general threshold is $95^{\circ}C$ for preventing long-term degradation from high temperature, and it is suggested that the temperature gradient should be less than $60^{\circ}C$ to avoid crack generation in concrete structures. The amount of damage depends on the characteristics of the concrete mixture, and increases with the temperature and exposure time. The tensile strength of concrete is more susceptible than the compressive strength to degradation due to high temperature. Nuclear heating from radiation can be neglected under an incident energy flux density of $10^{10}MeV{\cdot}cm^{-2}{\cdot}s^{-1}$. Neutron radiation of >$10^{19}n{\cdot}cm^{-2}$ or an integrated dose of gamma radiation exceeding $10^{10}$ rads can cause a reduction in the compressive and tensile strengths and the elastic moduli. When concrete is highly irradiated, changes in the mechanical properties are primarily caused by variation in water content resulting from high temperature, volume expansion, and crack generation. It is necessary to fully utilize previous research for effective technology development and licensing of a Korean dry storage system. This study can serve as important baseline data for developing domestic technology with regard to concrete casks of an SF (Spent Fuel) dry storage system.