• Title/Summary/Keyword: Radiation Counter

Search Result 131, Processing Time 0.022 seconds

Development and Characterization of Tissue Equivalent Proportional Counter for Radiation Monitoring in International Space Station

  • Nam, Uk-Won;Lim, Chang Hwy;Lee, Jae Jin;Pyo, Jeonghyun;Moon, Bong-Kon;Lee, Dae-Hee;Park, Youngsik;Kim, Hyun Ok;Moon, Myungkook;Kim, Sunghwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.107-112
    • /
    • 2013
  • Tissue equivalent proportional counter (TEPC) can measure the Linear Energy Transfer (LET) spectrum and calculate the equivalent dose for the complicated radiation field in space. In this paper, we developed and characterized a TEPC for radiation monitoring in International Space Station (ISS). The prototype TEPC which can simulate a 2 ${\mu}m$ of the site diameter for micro-dosimetry has been tested with a standard alpha source ($^{241}Am$, 5.5 MeV). Also, the calibration of the TEPC was performed by the $^{252}Cf$ neutron standard source in Korea Research Institute of Standards and Science (KRISS). The determined calibration factor was $k_f=3.59{\times}10^{-7}$ mSv/R.

Application of the Detection of External Contamination on Radiation Workers for Bed Type Whole Body Counting Using Monte Carlo Method (몬테카를로 방법을 적용한 bed type 전신계측기의 방사선작업종사자 외부오염 검출 응용)

  • Kim, Jeong-In;Lee, Byoung-Il
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.242-245
    • /
    • 2013
  • Monte Carlo method was applied to discriminate the external contamination on radiation workers in nuclear power plants for internal dose assessment generally used with a bed type scanning detector whole body counter. Korean voxel model with internal contamination was used to estimate the detection patterns of whole body scanning. Also, the BOMAB model with various external contamination was assumed to compare with detection of radionuclides inside the human body. From the comparison of detection efficiency between front and back side up, external contamination was easily distinguished.

Development of Microvolume LET Counter for Therapeutic Heavy Ion Beam

  • Hirai, Masaaki;Kanai, Tatsuaki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.231-232
    • /
    • 2002
  • We have been developing microvolume LET counter in order to measure the three-dimensional LET distribution of the therapeutic heavy ion radiation volumes in the water phantom. With help of the technique of cathode induced carhge readout, this detector has a rectangular (box-shape) sensitive volume of which size is about 1 mm$^2$ and 2mm (depth).

  • PDF

The Whole Body Counting Experience on the Internal Contamination of $^{131}I$ at Korean Nuclear Power Plants (전신계측기를 이용한 원전종사자의 $^{131}I$ 내부방사능 측정 경험 및 개선방향에 대한 연구)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.121-128
    • /
    • 2009
  • During the maintenance period at Korean nuclear power plants, internal exposure of radiation workers occurred by the inhalation of $^{131}I$ released to the reactor building when primary system was opened. The internal radioactivity of radiation workers contaminated by $^{131}I$ was immediately measured using a whole body counter and the whole body counting was performed again after a few days. In this study, the intake estimated from the record history of entrance to radiation control areas and the measurement results of air sampling for $^{131}I$ in those areas, were compared with that from the results of whole body counting. As a result, it was concluded that the intake estimation using whole body counting and air sampling showed similar results.

Research on Measurement Condition Establishment of a Liquid Scintillation Counter System (액체섬광계수기 장비의 계측조건 확립에 관한 연구)

  • Park, Eung-Seop;Han, Sang-Jun;Lee, Seung-Jin;Kim, Hee-Gang;Lee, Na-Young;Mun, Ji-Yeon
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.3
    • /
    • pp.155-164
    • /
    • 2006
  • It is judged that there could be certainty in every process of analyzing environmental samples using Liquid Scintillation Counter. Therefore, this study focuses on quantitative evaluation on uncertainty in an effort to analyze comparatively accurately environmental samples. For this, after parameters which can have an effect on uncertainty was derived, the evaluation on each parameter was tamed out. The results of analysis of each parameter showed that the effect according to the weight difference of Teflon vial did not appear, and that standard deviations of SQP(E) averages reached saturation point at $75{\sim}90$ sec at the result of making increases step by step the irradiation time of External standard, and that values measured by repeat method produces good results compared with replicate. Also, conclusion was derived that analysis on sample after it is left in cold and dark room at least above 1,000 minutes have to be carried out, and the result of carrying out verification on results measured as well as equipment itself using radioactivity-error-analysis and chi-square test, resonable result was derived.

Calibration of TEPC for CubeSat Experiment to Measure Space Radiation

  • Nam, Uk-Won;Park, Won-Kee;Lee, Jaejin;Pyo, Jeonghyun;Moon, Bong-Kon;Lee, Dae-Hee;Kim, Sunghwan;Jin, Ho;Lee, Seongwhan;Kim, Jungho;Kitamura, Hisashi;Uchihori, Yukio
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.145-149
    • /
    • 2015
  • A newly designed Tissue Equivalent Proportional Counter (TEPC) has been developed for the CubeSat mission, SIGMA (Scientific cubesat with Instruments for Global Magnetic field and rAdiation) to investigate space radiation. In order to test the performance of the TEPC, we have performed heavy ion beam experiments with the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. In space, human cells can be exposed to complex radiation sources, such as X-ray, Gamma ray, energetic electrons, protons, neutrons and heavy charged particles in a huge range of energies. These generate much a larger range of Linear Energy Transfer (LET) than on the ground and cause unexpected effects on human cells. In order to measure a large range of LET, from 0.3 to $1,000keV/{\mu}m$, we developed a compact TEPC which measures ionized particles produced by collisions between radiation sources and tissue equivalent materials in the detector. By measuring LET spectra, we can easily derive the equivalent dose from the complicated space radiation field. In this HIMAC experiment, we successfully obtained the linearity response for the TEPC with Fe 500 MeV/u and C 290 MeV/u beams and demonstrated the performance of the active radiation detector.

CHEST WALL THICKNESS MEASUREMENTS AND THE DOSIMETRIC IMPLICATIONS FOR MALE RADIATION WORKERS AT THE KAERI

  • Lee, Tae-Young;Lee, Jong-Il;Chang, Si-Young;Kim, Jong-Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.299-303
    • /
    • 2001
  • Using ultrasound techniques, the Korea Atomic Energy Research Institute has measured chest wall thicknesses of a group of male workers at the Korea Atomic Energy Research Institute. A site-specific biometric equation has been developed for these workers. Chest wall thickness is an important modifier on lung counting efficiency. These data have been put into the perspective of the ICRP recommended dose limits for occupationally exposed workers: 100 mSv in a 5-year period with a maximum of 50 mSv in anyone year. For measured chest wall thicknesses of 1.9 cm to 4.1 cm and a 30 min counting time, the achievable MDAs for natural uranium in the KAERI lung counter vary from 5.75 mg to 11.28 mg. These values are close to, or even exceed, the predicted amounts of natural uranium that will remain in the lung (absorption type M and S) after an intake equal to the Annual Limit on Intake corresponding to a committed dose of 20 mSv. This paper shows that the KAERI lung counter probably cannot detect an intake of Type S natural uranium in a worker with a chest wall thickness equal to the average value (2.7 cm) under routine counting conditions.

  • PDF

Development of Measurement System for Industrial Transportable Gamma Ray CT (이동 형 산업용 단층측정 장치를 위한 감마선 검출시스템 개발)

  • Kim, Jong-Bum;Jung, Sung-Hee;Moon, Jin-Ho
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.231-237
    • /
    • 2012
  • This paper introduces a gamma-ray measurement system for a transportable tomography which is applicable for an industrial process diagnosis. The gamma-ray measurement system consists of pulse mode operating 72 channel CsI detectors, main AMP-pulse shaper, single channel analyzer, counter and control PC. The CsI crystal is coupled with a PIN diode which is connected to an amplifier and pulse shaper. For a compact design, the amplifier and pulse shaping circuit are included in a single package. 36 sets of CsI detectors are connected to a multi-channel counter through single channel analyzers. A computer controls and collects data from two multi-channel counters. This configuration results in 72 channel counting system in total. The CT rotator and radiation measurement system are controlled by a PC with LabVIEW program. Tomographic data were measured for a phantom by the measurement system and transportable gamma-ray CT. From the experimental data image reconstructions were performed by ML-EM algorithm. The result showed that the CsI detector system can be a suitable component for transportable gamma-ray CT system.

A Study on the Selection of Optimal Counting Geometry for Whole Body Counter (WBC) (인체 내부방사능 측정용 전신계측기의 최적 검출 모드 선정에 관한 연구)

  • Ko, Jong Hyun;Kim, Hee Geun;Kong, Tae Young;Lee, Goung Jin
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • A whole body counter (WBC) is used in nuclear power plants (NPP) to identify and measure internal radioactivity of workers who is likely to ingest or inhale radionuclides. WBC has several counting geometry, i.e. the thyroid, lung, whole body and gastrointestinal tract, considered with the location where radionuclides are deposited in the body. But only whole body geometry is used to detect internal radioactivity during whole body counting at NPPs. It is overestimated internal exposure dose because this measured values are indicated as the most conservative radioactivity values among the them of others geometry. In this study, experiments to measure radioactivity depending on the counting geometry of WBC were carried out using a WBC, a phantom, and standard radiation sources in order to improve overestimated internal exposure dose. Quantitative criteria, could be selected counting geometry according to ratio of count rates of the upper and lower detectors of the WBC, are provided through statistical analysis method.

Design and Construction of Multi-wire Proportional Counter and Preamplifier for Measurement of Charged Particle (하전입자의 측정을 위한 다중선 비례계수기와 전치증폭기의 설계 제작)

  • Kim, Jong-Soo;Yoon, Suk-Chull
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.2
    • /
    • pp.139-143
    • /
    • 1996
  • A multi-wire proportional counter with large sensitive area was designed and constructed considering diameter of anode wire. its material and space. A preamplifier connecting detector to main amplifier or counter was also designed and constructed for measurement output pulse from multi-wire proportional counter. The preamplifier was composed of charge-sensitive differential circuit. clipping circuit and amplification circuit. To test the performance of this equipment, terminal output pulse from the preamplifier was measured and compared with noise For these tests $^{239}Pu(360 Bq)\;and\; ^{90}Sr/^{90}Y(250 Bq)$ were used as radiation sources. The noise ingredient contributing to the maximum amplitude(180mV from $^{239}Pu$ and 200 mV from $^{90}Sr/^{90}Y$) was found to be very small(8 mV) Piled up pulse occurring at the output pulse of charge-sensitive differential circuit was measured as an independent pulse since this affected the amplification in the clipping circuit and amplification circuit. This information can be used to improve the loss of measurement due to piled up pulse.

  • PDF