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A newly designed Tissue Equivalent Proportional Counter (TEPC) has been developed for the CubeSat mission, SIGMA 
(Scientific cubesat with Instruments for Global Magnetic field and rAdiation) to investigate space radiation. In order to test 
the performance of the TEPC, we have performed heavy ion beam experiments with the Heavy Ion Medical Accelerator 
in Chiba (HIMAC), Japan. In space, human cells can be exposed to complex radiation sources, such as X-ray, Gamma ray, 
energetic electrons, protons, neutrons and heavy charged particles in a huge range of energies. These generate much a 
larger range of Linear Energy Transfer (LET) than on the ground and cause unexpected effects on human cells. In order to 
measure a large range of LET, from 0.3 to 1,000 keV/μm, we developed a compact TEPC which measures ionized particles 
produced by collisions between radiation sources and tissue equivalent materials in the detector. By measuring LET 
spectra, we can easily derive the equivalent dose from the complicated space radiation field. In this HIMAC experiment, we 
successfully obtained the linearity response for the TEPC with Fe 500 MeV/u and C 290 MeV/u beams and demonstrated 
the performance of the active radiation detector. 
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1. INTRODUCTION

CubeSat, beginning in 1999, has been providing students 

opportunities to carry out real satellite projects from design 

phase through test and into real operation (Heidt et al. 2000). 

SIGMA (Scientific cubesat with Instruments for Global 

Magnetic field and rAdiation) developed jointly by Kyunghee 

University and Korea Astronomy and Space science Institute, 

is one of the CubeSat projects scheduled to be launched 

in 2015 to investigate the Earth’s magnetic field, and space 

radiation at the altitude of about 750 km. Meanwhile, the 

TEPC (Tissue Equivalent Proportional Counter), the main 

payload of CubeSat, has been developed and characterized 

for monitoring radiation in the International Space Station 

(Nam et al. 2013). In this paper, we describe the design of the 

main payload, TEPC and show the calibration results. 

At the low earth orbit, satellites are exposed to an 

intensive radiation environment by trapped high energy 

particles and Galactic Cosmic Rays (GCR) (Hastings & 

Garrett 2004). The particles trapped by the geomagnetic 

field form Earth’s radiation belts. The intensity of space 

radiation formed by trapped particles dramatically increases 

between 500 km to 1,500 km altitude, as shown in Fig. 1. The 

equivalent dose is calculated with Geant4 simulation based 

on the measurements of the Van Allen Probes mission. The 

GCRs are high energy particles that originated from outside 
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our solar system. About 99% of GCRs are composed of a 

proton and helium atom and just 1% are heavy nuclei (HZE, 

High-atomic-number and high energy) ions (O’Neill 2006). 

Due to the high charge and heavy nature of HZE ions, their 

contribution to an astronaut’s radiation dose in space is 

significant even though they are relatively scarce. In order 

to measure the radiation dose contributed by the HZE ions 

and investigate the time variation of trapped particles, a 

specific radiation detector is required. The TEPC is known 

to be the best instrument for measuring the unknown 

complex radiation sources in small size volume (Rossi & 

Zaider 1996). 

2. INSTRUMENT

Fig. 2 shows the assembled SIGMA structure. The SIGMA 

is a 3U CubeSat 100 mm × 100 mm × 340.5 mm in size and 

consists of satellite structures, an avionics bus and two 

payloads, the TEPC and a magnetometer to investigate 

space environments.

The TEPC was first developed by Rossi & Rosenzweig 

(1955) to simulate the measurement of energy deposition 

in volumes of tissue with dimensions similar to the nucleus 

of a mammalian cell. TEPC has a rigid wall made of tissue-

equivalent plastic, surrounding a gas-filled cavity. An anode 

wire extends through the center of this gas cavity. Simulation 

of energy deposition in volumes with dimensions of a few 

micrometers is accomplished by operating the TEPC at a 

low pressure (Taddei et al. 2006).

Fig. 3 shows the TEPC chamber and detector electronics 

boards, such as a voltage divider, preamp and connector 

PCBs developed for the SIGMA mission. In particular, in 

order to minimize the detector electronic noise, the preamp 

board is located in the TEPC chamber. 

The spherical type detector is made of tissue equivalent 

plastic, A-150 with an outer diameter of 40 mm, and an 

inner diameter of 30 mm. We adopted a segmented TEPC 

sphere in which 5% voltage increments are applied on the 

segmented tissue equivalent sphere, which is comprised of 

7 isolated cathode rings, in order to make uniform electric 

field. The TEPC is housed in a 1.5 mm wall thickness 

stainless chamber filled with pure propane (C
3
H

8
) at 27.7 

Torr pressure to simulate a 2 μm site size. In addition, a 

digital pulse processor (DPP) algorithm was applied to the 

new version of the TEPC to improve the noise to signal ratio 

and to reduce power consumption. Also a two gain mode 

was adopted to obtain a wide measurement range with a 

single detector, from 0.3 to 1,000 keV/μm.   

Fig. 4 shows the electronics configuration of the digital 

pulse processor for the TEPC experiments. Signals from 

the anode wire of the TEPC are fed into the two-gain 
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Fig. 1. Ambient equivalent dose derived from the measurements of the 
Van Allen Probes mission.

Fig. 2. The assembled CubeSat SIGMA. SIGMA consists of avionics, UFH 
antenna, DC-DC Converters, S-band splitter and a torque rod including TEPC 
as a main payload.

Fig. 3. The assembled TEPC showing the inside structure of the detector 
chamber.
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(Low and High gain) electronics, which consist of buffers, 

coarse gain amps, pre-filters and 14-bit, 80 MHz sampling 

Analog-to-Digital converters. The new version of the digital 

pulse processor utilizes trapezoidal digital pulse shaping 

(Jordanov et al. 1994) which makes it possible to process 

the radiation signals fast, effectively reducing power 

consumption to less than 3 watts and improving the signal 

to noise ratio even with a small size electronics board. 

All of the functions for the digital pulse processing and 

the pulse height analyzer are implemented in a FPGA (field-

programmable gate array), Xilinx Spartan 6 - XC6SLX45. 

Also the housekeeping circuits consist of a high voltage 

supply and a temperature sensor reader to monitor the 

temperature inside the chamber. The negative high voltages 

for the TEPC are controlled remotely up to -1,000 volts. The 

control commands and energy histograms are transferred to 

the CubeSat using RS232 communication.

3. EXPERIMENT

In order to test  and calibrate the TEPC , several 

experiments have been performed with HIMAC (Heavy Ion 

Medical Accelerator in Chiba) at NIRS (National Institute 

of Radiology Science) in Japan (Nam et al. 2014). While 

the HIMAC is a facility for radiotherapy, the heavy ion 

beams are assigned to scientific research for nighttime and 

weekends (Hirao et al. 1992). 

Fig. 5 shows the experimental setup of the TEPC for 

the HIMAC beam exposure in the BIO room. Table 1 

summarizes the HIMAC experiments performed from 2013 

to 2014. In 2014, two experiment runs were performed. 

On 1st February 2014, our first experiment was performed 

with He (150 MeV/u) and on 5th February 2014 the second 

experiment was conducted with C (135 MeV/u). The goal 

Table 1. Summary of HIMAC experiments

Date Beam Active Detector Goal

2013

Feb. 1st, 
2014

He (150 MeV/u)
Prototype TEPC 

LET spectrum 
measurementFeb. 5th, 

2014
C (135 MeV/u)

2014

April 4th, 
2014

Fe (500 MeV/u)
Segmented TEPC 

+ DPP

Calibration of 
TEPC with  DPP 

electronics.
Feb. 6th, 

2015
Fe (500 MeV/u)

Segmented TEPC + 
DPP (2 gain mode)

Calibration of 
TEPC with new 
revision of DPP 

electronics.
Feb. 9th, 

2015
C (290 MeV/u)

Fig. 4. The TEPC electronics configuration.

Fig. 5. Setup of the prototype of the Tissue Equivalent Proportional Counter 
(TEPC) calibration in the HIMAC BIO room.
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of these experiments was to demonstrate the performance 

of the prototype TEPC, which is our first version of the 

active detector designed for the International Space Station 

operation. From these experiments, while the results 

are preliminary, we successfully measured the Linear 

Energy Transfer (LET) spectra for several bias voltages and 

measured the response functions for the different beam 

angles.

In 2014/15, the HIMAC experiment was performed three 

times, on April 4th, 2014, Feb. 6th, 2015 and Feb. 9th, 2015 

with Fe (500 MeV/u) and C (290 MeV/u) beams. For these 

campaigns, we modified the TEPC design and applied 

new technology for the SIGMA mission. While the 2013 

experiment was focused on testing the prototype detector, 

the 2014/15 experiments were designed to calibrate the new 

TEPC. In these experiments, we obtained LET spectra for 

the different beam filter thicknesses and beam directions.

4. RESULTS

Before the HIMAC experiments, the LET response of 

the TEPC was calibrated with the 252Cf neutron source at 

KRISS (Korea Research Institute Standards and Science). 

Here, the fluence and dose rate of the neutron source were 

4,200 n/cm2/s and 5.93 mSv/h respectively. When the 

neutrons interact with the tissue equivalent material, A-150 

of the TEPC, it produces protons that deposit energy in the 

cavity of the detector. By measuring the drop point of the 

deposited energy, we can obtain calibration factors. From 

Geant4 code simulation, the proton’s energy of drop point 

should be 225 keV and considering a site diameter of 2 μm, 

the drop point of LET can be calculated with the following 

equation.
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Here, E, l and d are the drop point energy, mean chord length and site diameter respectively. Fig. 6136 

shows the pulse height spectrum obtained from the 252Cf experiment. Here, the energy channel 137 
corresponding to the drop point of 168.8 keV/m is 93 ch and the LET for one channel is 1.81 138 
keV/m-ch.139 
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MeV/u) ions got through binary filters of 0 mm, 30.05 mm, 46.99 mm, and 56.70 mm thickness. Fig. 7147 
shows the LET spectra measured by TEPC for the Fe (500 MeV/u) ion beams with changing beam 148 
binary filters. Without the beam binary filter, the LET peak was measured at 297 keV/m and for the 149 
56.70 mm binary filter, the LET was measured at 957 keV/m. Note the LET peak shifted to high 150 
energy channels and the count rate decreased according to the increase in the thickness of the beam 151 

� (1)

Here, E, l and d are the drop point energy, mean chord 

length and site diameter respectively. Fig. 6 shows the pulse 

height spectrum obtained from the 252Cf experiment. Here, 

the energy channel corresponding to the drop point of 168.8 

keV/μm is 93 ch and the LET for one channel is 1.81 keV/

μm/ch.

In order to measure the LET generated from HZE ions 

in space, the TEPC is required to have good linearity over 

a wide LET range. The TEPC for the SIGMA mission is 

designed to measure the LET in the range of 0.3 ~ 1,000 

keV/μm. To confirm the LET range, we performed a HIMAC 

experiment with C (290 MeV/u) and Fe (500 MeV/u) beams 

whose beam size were 10×10 cm2. The beam flux was 100 

particles/cm2-spill and pulse duration was 1.7 second with a 

period of 3.3 seconds.

When ionizing radiation travels through matter, the 

energy loss plots a Bragg curve. Generally a peak occurs 

immediately before the particles come to rest. In this 

HIMAC experiment, the Fe (500 MeV/u) ions got through 

binary filters of 0 mm, 30.05 mm, 46.99 mm, and 56.70 mm 

thickness. Fig. 7 shows the LET spectra measured by TEPC 

for the Fe (500 MeV/u) ion beams with changing beam 

binary filters. Without the beam binary filter, the LET peak 

was measured at 297 keV/μm and for the 56.70 mm binary 

filter, the LET was measured at 957 keV/μm. Note the LET 

peak shifted to high energy channels and the count rate 

decreased according to the increase in the thickness of the 

beam binary filters.

In Fig. 8, the LET obtained from the HIMAC experiment 

and from neutron (252Cf ) sources in KRISS are plotted 

together. In this figure, it should be noted that the LET 
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Fig. 6. The pulse height spectrum obtained from the 252Cf experiment at 
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points are fitted well with a linear function and this means 

our instrument has good linearity from low to high LET.

5. CONCLUSION

In this paper, we describe the results of linearity responses 

of the TEPC obtained with HIMAC heavy ion beams. The 

design goal of our instrument is to measure the LET of space 

radiation in the wide range of 0.3 ~ 1,000 keV/μm, and so the 

device needs to be calibrated with known energy radiation 

sources. While low LET could be calibrated with gamma, 

proton and neutron beams in Korea, to confirm the high LET, 

heavy ion beam experiments are absolutely required. In the 

experiments reported here, we successfully obtained high 

LET spectra that will be used to design a flight model for the 

SIGMA mission that will be launched in late 2015.
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